

Sašo Pavlič

Construction of deep neural networks
using swarm intelligence to detect

anomalies

Gradnja globokih nevronskih mrež s
pomočjo inteligence rojev za detekcijo

anomalij

Master's thesis

Maribor, September 2021

I

Construction of deep neural networks

using swarm intelligence to detect
anomalies

Gradnja globokih nevronskih mrež s

pomočjo inteligence rojev za detekcijo
anomalij

Student: Sašo Pavlič

Study programme: Second cycle bologna study program of

 Informatics and technologies of communication

Module of study program: Security of information systems and security management

Mentor: doc. dr. Sašo Karakatič

Proofreader: Bojan Keevill

II

Zahvala

Najprej bi se rad zahvalil svojemu mentorju, doc. dr. Sašu Karakatiču za konstantno strokovno

pomoč in usmeritve v procesu raziskovanja in pisanja magistrskega dela.

Iskreno bi se rad zahvalil svoji celotni družini, ki me je v času študija podpirala in navdihovala na

moji izobraževalni poti. Prav tako bi se rad zahvalil svojim prijateljem in sodelavcem.

III

Acknowledgment

First of all, I would like to thank my mentor, doc. dr. Sašo Karakatič for constant professional

support and guidance in the process of researching and writing a master's thesis.

I would like to sincerely thank my entire family for supporting and inspiring me on my educational

journey during my studies. I would also like to thank my friends and co-workers.

IV

Gradnja globokih nevronskih mrež s pomočjo inteligence rojev za

detekcijo anomalij

Ključne besede: iskanje arhitektur nevronske mreže, strojno učenje, inteligenca rojev

UDK: 004.85(043.2)

Povzetek

Umetna inteligenca (angl. Artificial intelligence) postaja vse bolj dovršena in se vedno bolj uporablja

v storitvah, ki jih uporabljamo vsak dan. Aplikacije, ki so se bile še pred desetletji skoraj neizvedljive,

predvsem zaradi izgradnje njihove logike (samovozeča vozila, predlagane vsebine, sinteza govora

…), postajajo danes izvedljive z algoritmi, ki so zmožni sami zgraditi model odločanja za podano

težavo. Umetna inteligenca bo v prihodnosti poglavitno orodje, ki ga bomo uporabljali za reševanje

vse bolj zahtevnih vsakodnevnih težav.

Pomembno vlogo pri reševanju teh težav ima strojno učenje (angl. Machine learning), ki z globokim

učenjem (angl. Deep learning) gradi globoke nevronske mreže (angl. Deep neural networks).

Tovrstne mreže temeljijo na posnemanju poenostavljenega delovanja bioloških možganov in so zelo

učinkovite za reševanje določenih težav, kajti same prilagajajo parametre nevronov ob učenju.

Vendar pa je uspešnost učenja odvisna predvsem od tega, kako arhitekt zasnuje arhitekturo

globoke nevronske mreže in kako so nastavljeni parametri mreže. S temi nastavitvami omejimo

gradnjo nevronske mreže na izkušnje arhitekta, namesto da bi algoritem sam ugotovil, kakšne

nastavitve so najbolj primerne za podano težavo. Znanost je za reševanje te težave začela aplicirati

algoritme po vzoru iz narave (angl. Nature inspired algorithms) za izgradnjo nevronskih mrež z

nevroevolucijo (angl. Neuroevolution). Proces nevroevolucije išče in optimizira ustrezno

arhitekturo nevronskih mrež za reševanje specifične težave. Eden od algoritmov po vzoru iz narave

so algoritmi inteligence rojev, ki s posnemanjem vedenja delcev (npr. mravelj) v naravi iščejo

najboljšo možno rešitev za podano težavo. Pri nevroevoluciji je rešitev arhitektura modela

nevronske mreže. Takšen proces je inovativen predvsem za težave pri izgradnji arhitekture

nevronskih mrež, pri katerih poznamo le vhodne podatke (začetek) in končno stanje (cilj), ne pa

procesa, ki ga moramo izvesti na naši poti. Takšen način imenujemo nenadzorovano učenje (angl.

Unsupervised learning). Konkretni predstavnik takšnega nevronskega modela je avtomatski

kodirnik (angl. Autoencoder), ki sprejme vhodne podatke, izvede proces in vrne izhodne podatke,

cilj tega modela je, da so si vhodni in izhodni podatki čim bolj podobni, kajti zanimajo nas le koraki

V

procesa. S tem lahko opazujemo, kako se je model naučil predelati podatke, da so si čim bolj

podobni kljub izvajanju operacij nad njimi. Če pride do prevelikega odstopanja, pa lahko to

ovrednotimo kot anomalijo (angl. Anomaly detection). S tem procesom učenja iskanja arhitektur

nevronskih mrež lahko ustvarimo računalniške sisteme, ki delujejo tako kot živa bitja. Primer: »Kako

živo bitje opredeli spremembe v okolju kot razlog za strah ali užitek?«.

V magistrskem delu se bomo osredotočili na spoznavanje in implementacijo sistema za avtomatsko

gradnjo arhitektur nevronskih mrež. Naš program nosi ime AutoDaedalus. Ta program temelji na

uporabi inteligence rojev, s katero definiramo algoritem za odločitev komponent v nevronski mreži.

Te komponente so lahko vse od tipa nevronov, strukture nivojev, aktivacijskih funkcij do dimenzije

izhoda nevronov. Tip arhitekture nevronske mreže, ki jo v našem primeru gradi AutoDaedalus, je

avtokoder. Ta arhitektura je prepoznana po tem, da se vhodni podatki zakodirajo v latentni prostor,

nato pa dekodira nazaj v izhodne podatke. AutoDaedalus v svojem iskanju najuspešnejše

arhitekture nevronskega modela uporablja matriko, kot je razlika med vhodom in izhodom. Na

koncu imamo cilj, da dobimo najboljši nevronski model za rekonstrukcijo vhodnih podatkov. S tem

ko se je nevronski model naučil ustrezno zakodirati in dekodirati dan tip podatkov, ga lahko

uporabimo za iskanje anomalij. Razlog za to je verjetnost, da nevronski model ne bo znal ustrezno

zakodirati in dekodirati tipa podatkov, za katerega ni bil naučen. V našem primeru smo nevronske

modele učili na podatkih MNIST, v katerem lahko najdemo slike ročno napisanih številk od 0 do 9.

Če smo nevronski model učili na 99 % slikah enic (1) in 1 % slik ničel (0), smo želeli, da se model

nauči označiti enke (1) kot normalne in ničle (0) kot anomalije v podatkih.

Magistrsko delo je razdeljeno na 8 poglavij. Začne se s poglavjem, kjer se osredotočimo na

spoznavanje umetnih nevronskih mrež, pri čemer se podrobneje spoznamo s strojnim učenjem in

evolucijsko gradnjo nevronskih mrež. V tem poglavju želimo pridobiti potrebno znanje za učenje

tovrstnih mrež na podatkih. Ob tem spoznamo različne tehnike učenja in kakšni so potrebni procesi,

ko se model nevronske mreže uči na učni množici. Ker so nevronske mreže tesno povezane z

globokim učenjem, spoznamo tudi to tehniko. Poglavje nadaljujemo s podrobnejšim pregledom

nevronskih mrež in nevronov, ki jih sestavljajo. Ogledamo si, iz katerih komponent je sestavljen

nevron in kako potujejo podatki skozi njega. Pri tem spoznamo, da nevronsko mrežo sestavljajo

posamezni nivoji (vhodni, skriti, izhodni), ki so skupek nevronov. Vsak nevron se vede kakor

električno stikalo, ki se vključuje ali izklaplja, kadar podatki potujejo skozi nevronsko mrežo. To

vedenje je določeno kot rezultat aktivacijske funkcije, s katero lahko nadzorujemo celotno vedenje

nevronske mreže. Ker pa je ta tok podatkov pomemben za učenje nevronske mreže, spoznamo prav

VI

tako različne arhitekture nevronske mreže. Te arhitekture se razlikujejo po svoji strukturi in po toku

podatkov skozi nevrone. Ker nas v magistrski nalogi zanima predvsem gradnja nevronskih mrež, si

v naslednjem podpoglavju ogledamo, kako poteka evolucijski proces gradnje. Vse se začne z

iskalnim prostorom, ki definira vse možne generirane arhitekture za izgradnjo in optimizacijo

nevronskega modela. Pregledamo razliko, kako poteka iskanje arhitekture med človekom

(znanstvenikom) in avtomatskim sistemom (angl: neural architecture search (NAS). Nadaljujemo

strategijo iskanja, s katero se ustvarjajo kandidati za arhitekturo nevronskega modela. V naši nalogi

podrobneje spoznamo konkreten primer algoritma (angl: ant colony optimisation (ACO)), ki ga

uporabimo za iskanje arhitektur. Kot tretjo komponento NAS-a spoznamo evolucijsko strategijo, s

katero si pomagamo, ko želimo dobiti povratne informacije za optimizacijo iskalne strategije. Takrat

moramo izmeriti, oceniti ali predvideti uspešnost vsakega otroka arhitekture.

V tretjem poglavju preidemo k spoznavanju anomalij in načinov, kako jih lahko prepoznamo v

podatkih. V nekaj predstavljenih primerih si ogledamo, kakšne tipe anomalij poznamo in kako se

med seboj razlikujejo. Prav tako ugotovimo, da se detekcija anomalij razlikuje od tipa strojnega

učenja, kjer je odvisno, kakšni so podatki za učenje nevronskega modela. Podatki lahko vsebujejo

jasno označeno mejo med normalnimi primerki in anomalijami ali pa je ta meja nepoznana. Na

podlagi tega se odločimo, kateri tip strojnega učenja bo uporabljen, kajti od tega je odvisen izhod

algoritma.

V četrtem poglavju podamo primer praktične rešitve za odkrivanje anomalij s strojnim učenjem.

Predstavimo poseben tip nevronske mreže, to je avtokoder. Kakor že predhodno omenjeno je

glavna značilnost tega tipa nevronske mreže, da je sposoben originalne podatke zakodirati, nato pa

jih dekodirati nazaj v originalno obliko. Kakovost nevronskega modela avtokoderja se pokaže ob

primerjavi rekonstrukcije z originalom. Izbira avtokoderja tako sovpada s težavo zaznavanja

anomalij. V našem delo se osredotočimo na odkrivanje anomalij, kjer ne poznamo meje med

normalnimi podatki in anomalijami. Proces je relativno preprost, nevronski model avtokoderja

naučimo na neki množici podatkov. Za to množico je potrebno, da je večina podatkov normalnih,

nekaj pa anomalij. Ob tem procesu se bo model naučil zelo dobro obdelati normalne podatke, za

anomalije pa se ne bo dobro izkazal. S takšno uporabo lahko model nevronske mreže učimo brez

nadzora. V tem poglavju prav tako spoznamo, da je uspešnost obdelave podatkov odvisna od

globine avtokoderja (števila nivojev) in tipa. Še vedno pa je treba arhitekturo avtokoderja ročno

izdelati, zato si v naslednjem podpoglavju ogledamo, kako lahko to storimo s pomočjo inteligence

rojev. V našem primeru z uporabo algoritma ACO. Algoritem uporablja mravlje kot reprezentacijo

VII

nevronskega modela. Arhitektura, ki je zgrajena iz več nivojev, pa je reprezentacija poti, ki jo mravlja

prehodi. Tako mravlje vedno začnejo na vhodnem nivoju, nato pa glede na odločitev algoritma

vsaka izbere svoj naslednji tip nivoja z atributi (velikost, aktivacijska funkcija) in tako naprej, dokler

ni dosežena X globina nevronskega modela. Enak proces se ponovi na strani koderja pa tudi

dekoderja. Mravlja ob hoji skozi vozlišča za sabo spušča feromon. Več mravelj, ki se bo odločilo za

dano pot, bo spustilo več feromona na tleh, posledično pa bo gostota večja, kar bo privabilo še več

mravelj. Ta ideja izvira iz naravnega vedenja mravelj v koloniji. Kadar mravlje iščejo hrano, se izkaže,

da je najbolje, da mravlje skupaj najdejo najkrajšo pot med gnezdom in hrano. V našem umetnem

primeru se algoritem nadaljuje tako, da kadar vse mravlje opravijo svoje delo (generiranje

arhitekture avtokoderja), se ta pretvori v ustrezen objekt v knjižnici Keras. Na tem objektu lahko

nato izvedemo učenje in vrednotenje uspešnosti. Na podlagi rezultatov lahko določimo

najuspešnejšo mravljo, kar v našem primeru predstavlja model avtokoderja, ki ustvari najmanjšo

razliko med originalom in rekonstrukcijo vhoda.

Nadaljujemo s petim poglavjem, kjer smo predstavili implementacijo programa AutoDaedalus. Na

začetku smo začeli s predstavitvijo razloga za implementacijo avtomatskega iskanja nevronskih

arhitektur v primerjavi z ročno izdelanim. Navedli smo omejitve pri izdelavi, ki so bile razdeljene na

strojno opremo, ki smo jo uporabljali pri implementaciji in pri poznejšem testiranju, ter človeške

vire. AutoDaedalus je prav tako omejen pri tipu arhitektur nevronskih mrež, ki jih lahko izdela. To

je le avtokoder arhitektura. Naj omenimo, da je tip avtokoderja omejen na plitki in globoki model.

S tem smo si določili začetne meje, v katerih bo deloval naš program. V naslednjem podpoglavju so

omenjena orodja, okvirji in paketi programske opreme, ki je bila uporabljena. Ker je strojno učenje,

ki poteka na grafičnih karticah, hitrejše, smo namestili ustrezno programsko opremo za učenje na

grafičnih karticah. Ob nadaljevanju smo si podrobneje ogledali celotni tok programa AutoDaedalus,

kjer smo ugotovili, da se vse začne z uporabnikom, ki s pomočjo konfiguracijske datoteke nastavi

parametre za iskanje arhitektur. S tem omejimo iskanje arhitektur znotraj predvidenega območja.

Nadaljujemo pripravo nabora podatkov, kjer je treba določiti, kateri primerki podatkov bodo

normalni in kateri anomalije. Razmerje se lahko določi s parametrom v konfiguracijski datoteki. Na

koncu postopka dobimo nabor podatkov razdeljen na učno in testno množico. Tok programa

AutoDaedalus se nadaljuje z inicializacijo potrebnih objektov za knjižnici Tensorflow in Keras. Nato

pa preidemo na glavni del programa, kjer smo uporabili odprtno kodno rešitev DeepSwarm, ki

uporablja algoritem ACO. Kot že omenjeno smo ta del kode spremenili za naše potrebe. DeepSwarm

je pristojen predvsem za vodenje iskanja nevronskih arhitektur, shranjevanja kreiranih modelov,

prikazovanje infografike in zaganjanje ACO-algoritma na podlagi konfiguracijske datoteke.

VIII

DeepSwarm skrbi, da kadar je zgenerirana arhitektura modela, se dodajajo določeni nivoji. Ti so

potrebni, da je možno na koncu model koderja in dekoderja združiti v en sam model avtokoderja.

Tega uporabimo za učenje na učni množici. Skozi trening modela se nam izpisujeta natančnost in

izguba. Ob koncu učenja pa se model ovrednoti z matrikami za izračun matrike zmede, F-mere in

krivulje ROC-AUC. S pomočjo izpisanih metrik lahko ocenimo, kako se je končna arhitektura

avtokoderja obnesla za prepoznavanje anomalij in kateri nevronski model je bil pri tem bil

najuspešnejši.

V šestem poglavju preidemo do eksperimentalnega dela, kjer smo želeli preizkusiti, kako se naša

implementacija programa AutoDaedalus obnese v primerjavi z ročno zgrajeno arhitekturo

avtokoderjev. Na eksperimentalni del smo se pripravili tako, da smo zasnovali dva različna

eksperimenta. V prvem smo želeli preizkusiti obe metodi na podatkovni množici, kjer so enke (1)

normalni podatki, ničle (0) pa anomalije. V drugem eksperimentu pa so bili normalni podatki med

1 in 9 in le ničle (0) anomalije. Pri tem smo določili 0.9 kot kvantil dovoljene napake med originalnimi

podatki in anomalijami. Obe metodi smo preizkušali med seboj do maksimalne globine 5.

Generirani nevronski modeli so se razlikovali predvsem po številu nevronov v nivoju in aktivacijskih

funkcijah glede na metodo. Med primerjavo metod na prvem eksperimentu smo ugotovili, da se

uspešnost modelov ni kaj bistveno razlikovala in da sta obe metodi dosegali odlične rezultate glede

na rezultate vseh matrik. Na koncu je bila ročna metoda za malenkost uspešnejša. V nasprotju z

drugim eksperimentom so razlike postale hitreje vidne. Tukaj je šlo za bistveno težji eksperiment,

kajti s tako preprosto arhitekturo nevronske mreže pri dani težavi se hitro pokaže, da se model ni

sposoben naučiti tako kakovostno kot v prejšnjem eksperimentu razlikovati med normalnimi

podatki in anomalijami. Zato sta imela odločilno vlogo izbira zaporedja nivojev in kombinacija

aktivacijskih funkcij v nevronskih modelih. V tem eksperimentu je AutoDaedalus zgradil boljšo

arhitekturo za prepoznavanje anomalij. To se je zelo poznalo na številu pravilno identificiranih

anomalij, ki je bilo v najboljšem modelu več kot dvakrat večje kot v najboljšem modelu pri ročni

metodi. Kadar pa primerjamo vse generirane nevronske modele po obeh metodah, pa so bili po

matrikah F1-mera in AUC vrednosti modelov po naši metodi boljši za 3,5 %.

V predzadnjem poglavju so diskusija, komentiranje eksperimentov in sprejemanje hipotez. Glavne

iztočnice iz tega poglavja so predvsem, da lahko sistemi za avtomatsko kreiranje arhitektur

nevronskih modelov izdelajo vsaj enako dobre modele, v nekaterih primerih pa celo boljše. Ti

sistemi nam odpirajo vrata, ki nas velikokrat ovirajo, kadar pride do tega, da se boljša rešitev lahko

skriva izven logičnih konceptov in sprejetih praks pri načrtovanju nevronskih arhitektur. To je

IX

pomembno predvsem takrat, ko je vključeno nenadzorovano učenje, kajti težko je zasnovati

uspešno arhitekturo, če je že razumevanje podatkov nejasno.

V zadnjem poglavju sledijo komentiranje in zaključki vseh poglavij. Nekaj besed namenimo tudi

vključevanju pridobljene teorije v našo implementacijo in poznejše testiranje skozi eksperiment. Na

koncu želimo sporočiti bralcu, da so možnosti razvoja in uporabe sistemov NAS, osnovanih na

inteligenci rojev, še velike.

X

Construction of deep neural networks using swarm intelligence to

detect anomalies

Keywords: neural architecture search, machine learning, swarm intelligence

UDK: 004.85(043.2)

Abstract

The design of neural network architecture is becoming more difficult as the complexity of the

problems we tackle using machine learning increases. Many variables influence the performance

of a neural model, and those variables are often limited by the researcher's prior knowledge and

experience. In our master's thesis, we will focus on becoming familiar with evolutionary neural

network design, anomaly detection techniques, and a deeper knowledge of autoencoders and their

potential for application in unsupervised learning. Our practical objective will be to build a neural

architecture search based on swarm intelligence, and construct an autoencoder architecture for

anomaly detection in the MNIST dataset.

XI

Table of Contents

1 INTRODUCTION .. 1

1.1 Chapter contents .. 3

2 BACKGROUND AND METHODS ... 4

2.1 Machine learning ... 4

2.1.1 Learning methods .. 4

2.1.2 Overfitting and underfitting ... 6

2.1.3 Deep learning ... 8

2.2 Neural networks ... 8

2.2.1 Artificial neural networks ... 9

2.2.2 Activation functions ... 10

2.2.3 Types of architectures .. 15

2.3 Evolutionary construction of neural networks ... 16

2.3.1 Search space .. 17

2.3.2 Search strategy .. 17

2.3.3 Evaluation strategy .. 18

3 ANOMALY DETECTION .. 19

3.1 What is an anomaly? .. 19

3.2 Types of anomalies ... 22

3.2.1 Point anomaly .. 22

3.2.2 Contextual anomaly ... 23

3.2.3 Collective anomaly ... 24

3.3 Detection in machine learning.. 24

3.3.1 Supervised anomaly detection .. 24

3.3.2 Semi-supervised anomaly detection .. 25

3.3.3 Unsupervised anomaly detection .. 26

3.4 Output of anomaly detection ... 26

XII

4 SOLUTION .. 27

4.1 Autoencoders for anomaly detection ... 27

4.1.1 Architecture of autoencoders .. 28

4.1.2 Depth of model .. 29

4.1.3 Types of autoencoders ... 29

4.1.4 Applications of autoencoders .. 30

4.2 Evolutionary neural networks .. 32

4.2.1 Evolutionary computation ... 32

4.2.2 Swarm intelligence ... 34

4.2.3 Ant colony optimisation ... 34

4.2.3.1 ACO algorithm ... 37

4.3 Evolutionary autoencoders .. 38

5 IMPLEMENTATION ... 40

5.1 Limitations ... 40

5.2 AutoDaedalus scope ... 41

5.3 Tools and frameworks .. 41

5.4 AutoDaedalus workflow ... 43

5.4.1 Configuration file setup ... 44

5.4.2 Preparation of the dataset ... 47

5.4.3 Backend initialisation ... 48

5.4.4 DeepSwarm with ACO .. 48

5.4.5 Evaluation .. 51

5.4.6 Finding the best model .. 55

6 EXPERIMENT .. 56

6.1 Experimental environment ... 56

6.1.1 Dataset overview ... 56

6.1.2 Software components .. 57

6.1.3 Types of generated models .. 58

6.1.4 Available matrices .. 58

XIII

6.2 Example of operational evolutionary NN ... 59

6.3 Anomaly detection with the help of an evolutionary NN ... 62

6.4 Results ... 64

6.4.1 Single label experiment.. 64

6.4.2 Multi label experiment .. 67

6.4.3 Comparison of methods... 69

7 DISCUSSION .. 77

8 CONCLUSION .. 79

9 CITATIONS AND BIBLIOGRAPHY .. 81

XIV

Table of Figures

FIGURE 1 DATA AUGMENTATION ON A SINGLE IMAGE .. 7

FIGURE 2 NEURAL NETWORK NODE COMPONENTS .. 10

FIGURE 3 ARTIFICIAL NEURAL NETWORK SCHEME .. 10

FIGURE 4 SIGMOID FUNCTION GRAPH ... 11

FIGURE 5 RELU GRAPH FUNCTION ... 12

FIGURE 6 TANH GRAPH FUNCTION ... 13

FIGURE 7 IDENTITY FUNCTION GRAPH ON THE REAL NUMBERS ... 14

FIGURE 8 EXAMPLE OF A FEEDFORWARD NETWORK WITH A SINGLE HIDDEN LAYER ... 15

FIGURE 9 EXAMPLE OF FEEDBACK NETWORK WITH A HIDDEN STATE THAT IS MEANT TO CARRY PERTINENT INFORMATION FROM ONE

INPUT ITEM IN THE SERIES TO OTHERS. .. 16

FIGURE 10 NAS SEARCH SPACE ... 17

FIGURE 11 THE GENERAL FRAMEWORK OF NAS. .. 18

FIGURE 12 A SIMPLE EXAMPLE OF DATASETS AND ANOMALIES ... 20

FIGURE 13 THE DIFFERENCE BETWEEN NOISE AND ANOMALIES .. 21

FIGURE 14 THE SPECTRUM FROM NORMAL DATA TO OUTLIERS .. 22

FIGURE 15 NUMBER OF COMMITS PER MONTH .. 23

FIGURE 16 NUMBER OF COMMITS PER DAY ... 24

FIGURE 17 SUPERVISED ANOMALY DETECTION ... 25

FIGURE 18 SEMI-SUPERVISED ANOMALY DETECTION .. 25

FIGURE 19 UNSUPERVISED ANOMALY DETECTION ... 26

FIGURE 20 THE INPUT IMAGE IS ENCODED TO A COMPRESSED REPRESENTATION AND THEN DECODED 28

FIGURE 21 EXAMPLE OF AUTOENCODER USAGE IN SEMI-SUPERVISED TECHNIQUE .. 31

FIGURE 22 TWO ANTS TRAVEL DIFFERENT PATHS .. 35

FIGURE 23 THE ANT WHICH TAKES THE SHORTEST PATH, REACHES FOOD FIRST .. 35

FIGURE 24 ON THE WAY BACK TO THE NEST, THE PATH IS MARKED AGAIN BY PHEROMONE .. 36

FIGURE 25 THE THIRD ANT WILL TRAVEL ALONG THE PATH WITH THE GREATEST LOADING OF PHEROMONE 36

FIGURE 26 AFTER BOTH PATHS ARE MARKED WITH PHEROMONE, ANTS WILL MORE LIKELY CHOOSE THE SHORTEST PATH 37

FIGURE 27 AFTER MULTIPLE ITERATIONS, THE MOST USED PATH WILL HAVE A GREATER PHEROMONE LOADING 37

FIGURE 28 AUTODAEDALUS FLOWCHART OF MAIN COMPONENTS .. 43

FIGURE 29 DATASET RATIO BETWEEN NORMAL AND ANOMALOUS DATA INSTANCES ... 47

FIGURE 30 SPLIT OF TRAINING AND TESTING DATASET .. 48

FIGURE 31 STRUCTURE OF LAYERS IN AN ENCODER .. 49

FIGURE 32 STRUCTURE OF LAYERS IN A DECODER .. 50

FIGURE 33 STRUCTURE OF LAYERS IN THE AUTOENCODER ... 50

XV

FIGURE 34 TRAINING LOSS METRICS ... 51

FIGURE 35 TRAINING ACCURACY METRICS ... 52

FIGURE 36 ORGINAL, COMPRESSED, AND RECONSTRUCTED IMAGE REPRESENTATION ... 52

FIGURE 37 MAE LOSS IN TRAINING SAMPLES ... 53

FIGURE 38 ROC CURVE FOR AUTOENCODER MODEL .. 55

FIGURE 39 ANOMALY DETECTION EXAMPLE ... 63

FIGURE 40 ROC CURVE OF THE BEST PERFORMING MODEL PRODUCED BY THE MANUAL METHOD IN THE SINGLE LABEL EXPERIMENT

 .. 70

FIGURE 41 ROC CURVE OF BEST PERFORMING MODEL PRODUCED BY THE AUTODAEDALUS METHOD IN A SINGLE LABEL

EXPERIMENT ... 71

FIGURE 42 ROC CURVE OF THE BEST PERFORMING MODEL PRODUCED BY THE MANUAL METHOD IN THE MULTI LABEL EXPERIMENT

 .. 73

FIGURE 43 ROC CURVE OF THE BEST PERFORMING MODEL PRODUCED BY THE AUTODAEDALUS METHOD IN THE MULTI LABEL

EXPERIMENT ... 74

FIGURE 44 COMPARISON OF EXPERIMENTAL RESULTS (GRAPHED) .. 76

XVI

Table of Tables

TABLE 1 TYPES OF MACHINE LEARNING ... 6

TABLE 2 CONFUSION MATRIX .. 54

TABLE 3 MNIST DATASET CLASS DISTRIBUTION .. 57

TABLE 4 USED SOFTWARE COMPONENTS ... 57

TABLE 5 GENERATED INFOGRAPHIC PER NN MODEL .. 58

TABLE 6 LOGGED INFORMATION WHEN A MODEL IS EVALUATED ... 59

TABLE 7 MANUAL MODEL SINGLE LABEL 1 LAYER .. 64

TABLE 8 MANUAL MODEL SINGLE LABEL 2 LAYER .. 64

TABLE 9 MANUAL MODEL SINGLE LABEL 3 LAYER .. 65

TABLE 10 MANUAL MODEL SINGLE LABEL 4 LAYER .. 65

TABLE 11 MANUAL MODEL SINGLE LABEL 5 LAYER .. 65

TABLE 12 AUTODAEDALUS MODEL SINGLE LABEL 1 LAYER .. 65

TABLE 13 AUTODAEDALUS MODEL SINGLE LABEL 2 LAYER .. 66

TABLE 14 AUTODAEDALUS MODEL SINGLE LABEL 3 LAYERS ... 66

TABLE 15 AUTODAEDALUS MODEL SINGLE LABEL 4 LAYERS ... 66

TABLE 16 AUTODAEDALUS MODEL SINGLE LABEL 5 LAYERS ... 66

TABLE 17 MANUAL MODEL MULTI LABEL 1 LAYER ... 67

TABLE 18 MANUAL MODEL MULTI LABEL 2 LAYER ... 67

TABLE 19 MANUAL MODEL MULTI LABEL 3 LAYER ... 67

TABLE 20 MANUAL MODEL MULTI LABEL 4 LAYER ... 67

TABLE 21 MANUAL MODEL MULTI LABEL 5 LAYER ... 68

TABLE 22 FIGURE 55 AUTODAEDALUS MULTI LABEL 1 LAYER .. 68

TABLE 23 FIGURE 55 AUTODAEDALUS MULTI LABEL 2 LAYER .. 68

TABLE 24 FIGURE 55 AUTODAEDALUS MULTI LABEL 3 LAYER .. 68

TABLE 25 FIGURE 55 AUTODAEDALUS MULTI LABEL 4 LAYER .. 69

TABLE 26 FIGURE 55 AUTODAEDALUS MULTI LABEL 5 LAYER .. 69

TABLE 27 SINGLE LABEL EXPERIMENTS RESULT FOR THE MANUAL METHOD ... 70

TABLE 28 SINGLE LABEL EXPERIMENT RESULTS OF THE AUTODAEDALUS METHOD .. 71

TABLE 29 MULTI LABEL EXPERIMENTS RESULT FOR A MANUAL METHOD .. 72

TABLE 30 MULTI LABEL EXPERIMENTS RESULT FOR THE AUTODAEDALUS METHOD .. 73

TABLE 31 COMPARISON OF EXPERIMENTAL RESULTS (TABULATED) ... 75

XVII

List of abbreviations

AI Artificial intelligence

ML Machine learning

DL Deep learning

NN Neural network

ANN Artificial neural network

DNN Deep neural network

CNN Convolutional neural network

NAS Neural architecture search

SL Supervised learning

UL Unsupervised learning

RL Reinforcement learning

GA Genetic algorithm

EC Evolutionary computation

EA Evolutionary algorithm

ACO Ant colony optimisation

ACS Ant colony system

EvoAE Evolving autoencoders

Tanh Hyperbolic tangent

ReLU Rectified Linear Unit

API Application programming interface

ROC Receiver operating characteristic

AUC Area under the curve

TPR True positive rate

FPR False positive rate

MSE Mean squared error

MSE Mean absolute error

XVIII

TP True positive

FN False negative

FP False positive

TN True negative

TPR True negative rate

FNR False negative rate

TNR True negative rate

FPR False positive rate

CUDA Compute Unified Device Architecture

RAM Random Access Memory

CPU Central Processing Unit

GPU Graphical Processing Unit

SW Software

1

ChapterⅠ

1 INTRODUCTION

Artificial intelligence (AI) is becoming more sophisticated and is deployed in services that we use

every day. Applications that were unfeasible a decade ago, due to the complex nature of their logic

(self-driving vehicles, personalised content, speech synthesis, etc.), are now becoming feasible with

algorithms capable of building a decision model for a given problem. Artificial intelligence will be

the primary tool we employ in the future to solve everyday challenges.

Machine learning (ML) plays an important role in solving these problems by building deep neural

networks (DNN) through deep learning (DL). Such networks mimic the function of biological brains

and are extremely successful in solving specific problems because they modify neuronal parameters

during learning on their own. However, the success of learning is mostly determined by the DNN

architecture and the network parameters set by the architect. With these parameters, we limit the

neural network (NN) design to the architect's experience rather than the algorithm selecting which

settings are most appropriate for a given problem. To address this issue, computer scientists have

begun to design biomimetic algorithms to generate NNs by neuroevolution. The neuroevolutionary

method identifies and optimises the best NN design to solve a certain problem. Swarm intelligence

(SI) algorithms, for example, seek the best possible solution to a given problem by simulating the

behaviour of natural organisms (e.g., ants).

The solution rendered by neuroevolution represents the architecture of the NN model. Such a

method is novel, particularly for challenges in the construction of NNs, for which we only know the

input data (start) and the final state (target), but not the cognitive procedural steps that must be

accomplished in between. This is known as unsupervised learning. An autoencoder is a concrete

example of a NN model that receives input data, performs a process, and returns output data.

Because we are only interested in the cognition, the goal of this model is to make the input and

output data as similar as possible. We can indirectly observe that the model has learned to process

2

the data correctly, if the input and output data are similar despite the operations performed on

them. However, if there is a lot of variation we classify it as anomalous (Anomaly detection).

With such a method for the discovery of novel NN designs, we can build computer systems which

we cannot understand the operation of but know how they should behave. E.g. "How does a living

system define changes in the environment as a source of fear or pleasure?"

Goals:

1. Implement a neural architecture search (NAS) for anomaly detection.

2. Use a swarm intelligence algorithm to optimise the search space when creating neural

network (NN) models.

3. Allow an unsupervised machine learning algorithm to make decisions that mark the

threshold between normal and anomalous data instances.

4. Compare automatically generated and manually created neural network models for

anomaly detection.

5. Open-source project to engage further research activity in this field.

Research questions:

RQ1: Are automatically generated NN models comparable to manually created ones in terms of

anomaly detection?

RQ2: What percentage of anomalies inserted into the dataset is enough for a NN model to learn

from?

RQ3: Can swarm intelligence algorithms be used to effectively search for autoencoder architecture?

Hypotheses based on the research questions:

H1: The total number of metrics is greater in automated models than in manual ones.

H2: The 1% of anomalies in the dataset is enough during the learning phase to detect half of them

in the 0.9 quantiles during testing.

H3: The ant colony optimisation (ACO) algorithm can be used to construct useful autoencoder

architectures.

3

The thesis is derived from the above research questions and hypotheses.

The NAS technique with a swarm intelligence search strategy can design novel NN architectures for

a single objective search, with little or no help from human experts.

1.1 Chapter contents

This Master’s thesis comprises 8 chapters. We will learn about ML in the second chapter, which

continues with an overview of artificial neural networks, the parameters required for their

operation, and how evolutionary neural networks are built. The third chapter presents the

knowledge that is necessary for anomaly detection, such as the definition of various types of

anomaly and how to detect each of them with the help of ML. The main objective of this work is

presented in the fourth chapter, as a computational system that is capable of performing the

evolutionary construction of new NN models to detect anomalies in a dataset. In this chapter, we

also cover the NN type of autoencoder, with the objective of learning how they operate and how

we can use them for anomaly detection. We learn about the ant colony optimisation method, which

serves as our primary architecture for construction of the autoencoder. In the fifth chapter, we use

the acquired knowledge to develop a programme that incorporates an ACO-based NAS for anomaly

detection. This chapter includes the programme overflow and a detailed explanation of the

components. The sixth chapter is based on experiments and compares manual construction of a

NN with our implementation of AutoDaedalus. We answer our research questions and confirm our

hypotheses on the basis of experimental data. The seventh chapter presents in-depth debates, and

the eight chapter summarises the thesis.

4

Chapter Ⅱ

2 BACKGROUND AND METHODS

2.1 Machine learning

Machine learning (ML) is a subset of artificial intelligence that focuses on teaching computers how

to learn without the requirement for particular task programming. The key notion is that it is

feasible to develop algorithms that can learn and predict from data by themselves [1]. ML is an

expanding area of data science. Algorithms are taught to generate classifications or predictions

using statistical approaches, allowing data mining projects to reveal important insights.

This kind of mined knowledge is important for the growth metrics that businesses employ while

moving products to the market [2]. According to UC Berkeley [3] ML is composed of three parts.

▪ A decision process: Machine learning algorithms are used to produce predictions or

classifications in general. The algorithm will provide an estimate of a pattern in the data

based on some input data, which can be labelled or unlabelled.

▪ An error function: An error function is used to assess the model's prediction. If there are

known instances, an error function may be used to compare the model's accuracy.

▪ A model optimisation process: Weights are adjusted to decrease the gap between the

known example and the model’s estimate if the model can fit better to the data points in

the training set. This assessed and optimised procedure will be repeated by the algorithm,

which will update weights on its own until a certain level of accuracy is reached.

2.1.1 Learning methods

Supervised learning (SL) – Is the most common learning approach in neural networks (NNs). It is

learning via the teacher-student relationship, where the teacher possesses the environmental

knowledge. The representation of an environment is expressed with a set of input-output pairs

(features and labels). This learning method is applied in the field of classification or value prediction

(regression). A learning algorithm is taught with examples, which represent input and expected

5

output, e.g. a correctly classified value or output numerical value. Weights are adjusted according

to the difference between an actual vs. predicted network result with a loss function[4].

Unsupervised learning (UL) – Is the exact opposite of supervised learning. It does not require any

pre-labelled or completely labelled dataset. Unsupervised learning is self-organised learning. Its

main goal is to investigate underlying patterns and make predictions about the outcome. We

provide the computer data and instruct it to search for hidden features and logically cluster the

data. This learning method is used for clustering, anomaly detection, association, autoencoders. It

is difficult to assess the accuracy of an algorithm that has trained with unsupervised learning since

the data lacks a recognised "ground truth" element. However, labelled data is difficult to come by

in many study areas, or it is prohibitively expensive. In some circumstances, allowing the deep

learning model to discover patterns on its own can yield excellent results [4].

Reinforcement learning (RL) – Does not rely on either supervised or unsupervised learning. RL

algorithms learn to react to their surroundings on their own in any given context. This field of study

is expanding quickly and creating a wide range of learning algorithms which can be used in robotics,

gaming, and other fields. There is always a start and an end state for a learning agent. However,

there may be multiple ways to reach the end state. An agent tries to manipulate the environment

in a reinforcement learning problem to its benefit. On success, the agent is rewarded and

appreciated, while If the agent is rewarded and appreciated for displaying good behaviour, then it

should be penalised and disappreciated in equal measure upon failure to display good behaviour.

The agent learns from its environment in this way [4].

6

Differences are summed up in Table 1, as explained in the paper [5].

Criteria Supervised ML Unsupervised ML Reinforcement ML

Learning Trained with labelled data

and guidance.

Self-training with

unlabelled data without

any guidance.

Works on interacting with

the environment

Type of data Labelled Unlabelled No predefined data

Type of problems Regression and

classification

Association and clustering Exploitation or

exploration

Algorithms Linear regression,

Logistic regression,

SVN, KNN, etc…

K-Means,

C-Means,

Apriori

Q-Learning

SARSA

Goal Calculate outcomes Discover underlying

patterns

Learn a series of actions

Application Forecasts trading,

Risk evaluation

Recommendation

systems, Anomaly

detection

Gaming, Self-driving

vehicles

Table 1 Types of machine learning

2.1.2 Overfitting and underfitting

A model that overfits the training data is referred to as overfitting. When a model learns the

information and noise in the training data to the point where it degrades the model's performance

on new data, this is known as overfitting. This means that the model picks up on noise or random

fluctuations in the training data and learns them as concepts. The issue is that these concepts do

not apply to new data, limiting the model's ability to generalise. Nonparametric and nonlinear

models, which have more flexibility when learning a target function, are more prone to overfitting.

As a result, many nonparametric machine learning algorithms feature parameters or strategies that

limit and constrain the amount of detail learned by the model. The problem of overfitting can be

solved in various ways, the most basic of which is adding more data to the dataset or reducing

model complexity [6]. On the other hand, we have the underfitting problem. A model is defined as

underfitting if it cannot model and generalise to new data. A machine learning model that is

recognised as underfitting is unsuitable, as evidenced by its poor performance on the training data.

Underfitting is rarely discussed since, given a decent performance metric, it is simple to discover.

7

The solution is to move on and experiment with different machine learning techniques.

Nevertheless, underfitting serves as a good counterpoint to the issue of overfitting.

Since overfitting is more difficult to overcome, multiple methods are used to reduce it. The obvious

first step that can be taken is to add more data to the learning process, which in some cases will

not be possible as we already possess all the available data. The next step is data augmentation, a

solution to the previous problem when we do not have more data for training. It is a process that

makes minor changes to data such as flips, rotations, scaling, or translation. That kind of data

transformation will make neural networks believe they are facing new instances. In Figure 1, we

can see a demonstration of data augmentation for convolutional neural networks (CNN) training

models [7], [8].

Figure 1 Data augmentation on a single image

When the previously mentioned steps do not provide a suitable solution, we need to add

regularisation to our NN model. The four most popular options are dropout, L1 and L2

regularisation, and cross-validation. The dropout technique prevents interdependent learning by

changing the outputs of randomly selected neurons to 0 during each training cycle. L1 regularisation

estimates the median of the data, while L2 regularisation estimates the mean of the data to avoid

overfitting. The last technique is cross-validation. The idea is to construct many tiny train-test splits

using the initial training data. These divisions can be used to fine-tune the model. Data is partitioned

into k subsets, or folds, in typical k-fold cross-validation. The method is then iteratively trained on

k-1 folds, with the remaining fold serving as the test set (holdout fold). With cross-validation, one

may fine-tune hyperparameters using only the data from the original training set. This allows us to

keep the test set as a truly unseen dataset for the selection of a final model. The selection of

techniques is dependent on the dataset.

8

2.1.3 Deep learning

Deep Learning (DL) is a subset of ML approaches that employs artificial neural networks (ANNs)

that are inspired by the structure of neurons in organic brains. DL essentially consists of three or

more layers in a neural network. The term “deep learning” originally referred to the presence of

numerous layers in an artificial neural network, but its meaning has evolved over time. While 10

layers were sufficient a few years ago to account for network depth, today it is usual for a network

to be deep if it has hundreds of layers. The way each algorithm learns is where DL and ML differ.

These algorithms can take text, pictures, voice recordings, and learn important characteristics of

the data, which can significantly reduce the need for human expertise (especially in feature

extraction) and allows the usage of larger datasets [9]. As Jeff Dean mentioned in his slides [10],

with more data plus bigger models plus more computations, results get better.

2.2 Neural networks

We could describe neural networks as a set of algorithms whose architecture is inspired by the

human brain for recognising patterns in data. They use a sort of machine perception to categorise

or cluster raw data. All real-world data, whether images, sounds, text, or time series, must be

translated into numerical vectors which form patterns that the NN can recognise, optimise and

even predict. This allows researchers from many scientific disciplines to design artificial neural

networks to solve a variety of problems. In paper [4], the author asks ‘Why artificial neural

networks?’, which is answered by the fact that at the time of writing, von Neumann's modern

computer did not offer characteristics comparable to a human brain. A few of the characteristics

mentioned by the author are:

▪ learning ability

▪ generalisation ability

▪ adaptivity

▪ inherent contextual information processing

▪ fault tolerance

As we know, modern digital computers outperform humans when it comes to numerical

computation. However, humans are still much better at solving perceptual problems, such as

recognising the same human face in different spacetimes. For example, recognising a known person

on a group photo taken during childhood and a present picture. Or recognising a potentially

dangerous pattern of human driving behaviour based on previous experience. Not only are humans

better at those tasks, they are also very flexible in solving common problems without much effort.

9

Nevertheless, as more resources come into the field of artificial intelligence, applications based on

neural networks will become better [11].

2.2.1 Artificial neural networks

Artificial neural networks (ANNs) are comprised of node layers containing an input layer, one or

more hidden layers, and an output layer, they are used to simulate human neural networks. Each

node, or artificial neuron, is connected to all others and has a weight and threshold linked with it.

The nodes represent a space where computation happens, with similar characteristics as human

neurons, which need a specific threshold of stimulation to be activated (can be controlled with bias

manipulation). This activation represents a passage of data in our ANN from a given layer to the

next one in a network. Otherwise, no data is passed along to the next layer of the network. A node

combines data input with a set of coefficients and weights amplifying or dampening that input. It is

important to choose the right input data concerning the task which the algorithm is trying to learn.

For example, if we want to classify the data with a minimum error, we need to find the right input

data. To determine whether and to what extent a signal should progress further through the neural

network, the input and weight products are summed and passed through an activation neuron.

When a signal passes through different layers of neurons, which consequently activate other

activations nodes, we can determine the outcome of a neural network. The relationship

representing the neuron output signal is given by the following equation [12]:

Ο = 𝑓(𝑛𝑒𝑡) = 𝑓 (∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1

) (1)

Where 𝑤𝑗 represents the weighting vector. Function 𝑓(𝑛𝑒𝑡) is referred to as an activation function,

where the 𝑛𝑒𝑡 variable is a scalar product of the input and weight vectors,

𝑛𝑒𝑡 = 𝑤𝑇𝑥 = 𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛 (2)

𝑇 is a transposition of a matrix. The final output value 𝑂 is computed as

𝑂 = 𝑓(𝑛𝑒𝑡) = {
1, 𝑖𝑓 𝑤𝑇𝑥 ≥ 𝜃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

where 𝜃 is the threshold level of a neuron. If the result is 1, data will flow through the network, if

it is 0, then it is a dead end.

10

In Figure 2 we can see the components of a single node. A collection of nodes is called a node layer

(Figure 3), representing a row of neurons in a neural network. Each of them turns on and off like an

electrical switch as the input is fed through the network. Starting with an initial input layer that

receives the user’s data, each layer's output is the subsequent layer's input.

Figure 2 Neural network node components

Figure 3 Artificial neural network scheme

The concept of forward feeding is usually the case, even though recurrent neural networks that

allow feedback connections also exist.

2.2.2 Activation functions

When we want to shape the neuron’s output, activation functions come to the rescue. They enable

us to set the output boundary for a given task, consequently with this operation, we can determine

the result of a neural network as well. An activation function defines how the weighted sum of an

input in a node is transformed into an output in the neural network. Although networks are

designed to use the same activation function for all nodes in a layer, the activation function is

11

applied within or after the internal processing of each node in the network. A neural network

typically contains three sorts of layer. An input layer, which accepts initial data into the system for

processing; a hidden layer that receives input from the previous layer, runs an algorithm, and then

sends the calculated output to the next layer; and an output layer that makes a prediction. In this

process, the hidden layers typically use the same activation function. The output layer on the other

hand uses the activation function which fits the requirements for a prediction by the model. Various

activation functions may be utilised in neural networks, however, only a few are utilised in practice

for hidden and output layers.

The following are the most often utilised activation functions for hidden layers:

• Sigmoid activation function

This is a mathematical function, the plot of which has a characteristic "S" shape. It is used in

machine learning mainly because at a certain value of X it gradually maps the value of Y, which is

very practical in classifying data that we know to have only two meanings. The output is limited to

values between 0 and 1. The equation is expressed as follows:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
(4)

Figure 4 Sigmoid function graph

12

• ReLU activation function

This consists of the function F (z) = max (0, z), which means that if the result is positive, it will print

the same value, otherwise the output is 0. It is popular because it is easy to use and effective in

getting around the limits of other popular activation functions like Sigmoid and Tanh. It is less prone

to vanishing gradients, which prohibit deep models from being trained, yet it can suffer from other

issues such as saturated or "dead" units. In Figure 5 below, we can see the graph of the function.

The equation is expressed as follows:

{
0 𝑖𝑓𝑥 ≤ 0
𝑥 𝑖𝑓 𝑥 > 0

 = max{0, 𝑥} = 𝑥1𝑥 > 0 (5)

Figure 5 ReLU graph function

• Tanh or hyperbolic tangent Activation Function

This function accepts any real value as input and returns a value between -1 and 1. The larger the

input (higher positive number), the closer the output is to 1.0, and the smaller the input (higher

negative number), the closer the output is to -1.0. It is calculated as follows:

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (6)

Where e is the base of the natural logarithm.

13

Figure 6 Tanh graph function

We can see that the ‘S’ shape of the Tanh function is similar to that of the Sigmoid function in Figure

6. When choosing an activation function, it often boils down to the architecture of the neural

network used in a model. Common architectures in modern neural network models such as the

multi-level perceptron and convolution neural networks will use the ReLU activation function or its

extensions as (Leaky ReLU, GELU, ELU, …) [13]. Tanh or sigmoid activation functions, or perhaps

both, are still extensively used in recurrent networks. The LSTM (long short-time memory), for

example, frequently employs Sigmoid activation for recurrent connections and Tanh activation for

output [14].

Output layers are used for a direct output prediction of a neural network model. It is important to

note that all feedforward neural networks have an output layer. Activation for those layers can be

done by Linear, Logistic (Sigmoid), and Softmax functions since they represent a list of most

commonly used ones.

14

• Linear output activation function

This function is sometimes referred to as an identity function because it always returns the same

value that was passed into it. This is due to the multiplication with 1.0, which does not make any

change to the weighted sum of the input. Formula:

𝑓(𝑥) = 𝑥 (7)

Figure 7 Identity function graph on the real numbers

• Softmax activation function

The Softmax function transforms a vector of integers into a vector of probabilities, with the

probability of each value proportional to the vector's relative scale. Softmax is applied as the

activation function for multi-class classification issues involving more than two class labels. In

comparison with a Sigmoid function which is used to represent a probability distribution over a

binary variable, Softmax is used to represent the probability distribution over a discrete variable

with n possible values.

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐽
𝑗=1

 𝑓𝑜𝑟 𝑖 = 1, … , 𝐽 (8)

Where e is a natural logarithm base and x is a vector of outputs.

15

2.2.3 Types of architectures

• Feedforward networks

The connections between neurons in this sort of NN do not form a cycle or loop. The information

is simply flowing forward from the input to the subsequent levels. There may be several

intermediary hidden layers depending on the network design. Despite being the oldest and most

basic form of network design, the feedforward NN is still frequently employed in machine learning.

Figure 8 shows the mentioned architecture with 6 neurons in the input layer, 3 neurons in a hidden

layer, and a single neuron in the output layer [4].

Figure 8 Example of a feedforward network with a single hidden layer

• Recurrent networks

The feedback neural network remembers the lessons learned from the past (previous iterations)

state and applies it to the future (next iteration). Here we must remember that an ordinary DNN

uses its learned state for the future, but this learned knowledge is forthcoming from the entire pre-

completed training. Meanwhile, an RNN works the same way, but in addition remembers the state

that has been learned from the previous input while the output is being generated. An RNN may

have a single or multiple inputs and outputs. The hidden state vector, which contains context,

16

determines output. This is based on prior inputs and their results. As a result, the same input may

produce a different output depending on the previous inputs in the series.

Figure 9 Example of feedback network with a hidden state that is meant to carry pertinent information from

one input item in the series to others.

2.3 Evolutionary construction of neural networks

For conventional machine learning algorithms, the hyperparameter optimisation problem has been

addressed with a variety of methods. For example, we can use techniques such as grid search,

random search, Bayesian optimisation, meta-learning, and others. Those techniques try to find a

set of optimal hyperparameters, which are used in an algorithm during the learning process.

However, when it comes to a deep learning architecture, the problem becomes much more

challenging to solve. Not only because more time and computational resources are required, but

extensive knowledge and understanding of both NN and optimisation processes [15]. Deep learning

engineers are expected to have a solid comprehension of what architecture will perform best in a

specific scenario, and yet it is rarely the case. The various possible design architectures that can be

created are endless. This is where neural architecture search (NAS) is used to automate NN

architecture engineering. Its goal is to figure out a network topology that will give the best result

on a given task. As presented in this article [16], NAS is a system with three primary components

[16].

17

2.3.1 Search space

In principle, the search space determines which architectures can be designed and a set of rules on

how layers can be connected and set up (e.g., convolutional, fully connected, pooling). Since

engineers often set up this component to simplify the search, researchers [16] are concerned that

it can bring human bias into a construction. Human intervention in a search can prevent finding

novel NN architectures which are beyond human understanding. In Figure 10, it is shown how the

cycle of human-based topology is crafted in comparison to NAS-based. According to another article

[17], the main difference is human intervention in search space construction and trial-and-error

spent resources.

Figure 10 NAS search space

2.3.2 Search strategy

A network architecture candidate pool is generated using a NAS search algorithm. It strives to

generate high-performance architecture candidates based on the child model performance

parameters (e.g., high accuracy, low latency). Examples of those algorithms are based on Bayesian

optimisation, Reinforcement Learning (RL), Genetic Algorithm (GA), Weight sharing, and One-shot

[12].

18

2.3.3 Evaluation strategy

The goal of NAS is typicaly to discover an architecture that produces high prediction performance

on data that has not been seen before. To get feedback for optimising the search algorithm, we

need to measure, estimate, or anticipate the performance of each child model. Candidate

evaluation can be quite costly, hence several innovative evaluation methods have been proposed

to save time or calculation. When we evaluate a child model, we are generally interested in its

accuracy on a validation set. Recent research has begun to look into other aspects of a model, such

as model size and latency, because specific devices may have memory constraints or require quick

response times. As presented in Figure 11, NAS can be visualised as a pipeline of components. Each

of these components plays a vital role when building an effective NN model for a specific problem.

Figure 11 The general framework of NAS.

19

Chapter Ⅲ

3 ANOMALY DETECTION

Anomaly detection is the ability to find patterns in data that are not in line with expected content.

The main goal of this process is to define a norm, technique, barrier which will separate outliers

from normal data. Those data points are often referred to as anomalies, outliers, or unnatural [18].

An anomaly threshold cannot be generally set due to the fact that it can be used in a variety of

domains. For that reason, it has become widely studied in statistics and machine learning, where it

is also known as outlier detection, deviation detection, novelty detection, and exception mining

[19]. Over time, a variety of anomaly detection techniques have been implemented for particular

uses, such as the monitoring of sensor data on the international space station [20], credit card fraud

detection where the system mines a database [21], network traffic analyser for UDP flooding [22],

while others are designed to be more generic. Anomaly detections can be done based on available

data labels that denote whether an instance is normal or anomalous. Since anomalous behaviour

is often dynamic in nature, three methods of anomaly detection are commonly used. The

supervised anomaly detection technique in which classes for normal and anomalous data instances

are given. A semi-supervised technique in which classes are only assigned to normal and not to

anomalous data instances. An unsupervised technique in which normal and anomalous data

instances are presented, but no class labels are assigned [18]. Anomaly detection has high

importance because its behaviour is often critical to a running system, this is also why we see a

wider implementation of it in industry.

3.1 What is an anomaly?

According to Chandola et al. [18], anomalies are patterns in data which do not display

characteristics that are similar to normal data, their instances are significantly different from the

remaining data. This behaviour can be observed in any dimension of data if we can define a normal

20

subset to begin with. In Figure 12, we can see two-dimensional datasets, where the majority of

observations lie in the region 𝑁1 and 𝑁2 which represent normal data. Points that are far enough

away from these regions represent anomalies such as 𝑜1, 𝑜2 and points in the region 𝑂3.

Figure 12 A simple example of datasets and anomalies

While anomalies and noise are related, they have distinct concepts. Some authors use the term

“weak outliers” to describe an instance that is outside the interquartile range, but within minimum

and maximum, and “strong outliers” to describe an instance that is beyond all borders [23]. Noise

in data is usually random and originates for a variety of reasons. It may not be interesting unless it

can rate the quality of the instrument generating the data. In Figure 13(a), a single point A seems

to be very different from the rest of the data in aspects of features X and Y, therefore it is certainly

an anomaly in our example. Meanwhile, the situation in Figure 13(b) is much more subjective,

therefore it is much harder to state confidently if A is noise or an anomaly in the data. Point A in

Figure 13(b) is relatively more likely to present a data point for noise since it seems its randomness

shares similarities to other noise points. In addition, anomaly refers to an outlier type that is of

interest to an analyst, where point A does not have any strong evidence to flag it as an anomaly

[23].

21

Figure 13 The difference between noise and anomalies

Within the unsupervised situation anomaly detection where previous samples of anomalies do not

seem to be available, the distinction is due to the fact of the semantic boundary between normal

data and true anomalies. Noise is commonly presented as a weak outlier of normal data, which

does not meet a robust criterion for a data point to be interesting or anomalous enough to an

analyst.

To further understand the difference between noise and anomalies, Figure 14 gives a good

overview of different regions on a continuous spectrum from normal data to noise and to

anomalies. The distinction between the regions of the spectrum is frequently not exactly defined

and is made on an ad-hoc basis based on application-specific criteria. A noisy system is mostly the

main factor why many data points do not have a clear separation between noise and anomaly.

Regardless of that, the noise generated by a noisy system process will be deviant enough to have a

lower outlier score compared to anomalies, which typically have a higher outlier score. After all, it

comes to the interest of an analyst to regulate the separation of noise and anomalies [23].

22

Figure 14 The spectrum from normal data to outliers

3.2 Types of anomalies

When performing anomaly detection, it is important to understand different types of anomalies,

such as point, contextual or collective anomaly.

3.2.1 Point anomaly

When a particular data point in the dataset deviates from the normal pattern of behaviour, it can

be termed a point anomaly. This is considered a simple type of anomaly, and is therefore the subject

of many research and study communities. Taking a look at Figure 12, where points 𝑜1, 𝑜2 and subset

𝑂3 lie outside the boundary of normal data, which marks them as point anomalies, these often

represent an extreme deviation that happens randomly and has no particular meaning. An example

in real life would be when a developer is committing a source code on average 4.5 times per day,

but if it becomes 8 or more times on any random day, it is considered to be a point anomaly.

23

3.2.2 Contextual anomaly

When a data instance is anomalous in a specific context and not otherwise, it is termed a contextual

anomaly. Even when observing the same point through different contexts, we will not always

receive an indication of anomalous behaviour. To detect it we need to combine contextual and

behavioural attributes.

1. Contextual attributes are used to determine the context (or neighbourhood) for a data

instance. Time and space are most frequently used. For example, when a developer commits a

source code during the final stages of release, they are very likely to make a greater number of

commits per day, which is considered normal. On the other hand, making a lot of commits

during non-busy days is considered unexpected, anomalous, and would therefore require a

deeper analysis to be explained. We flag values based on different periods.

2. Behavioural attributes define the noncontextual characteristics of an instance. In our example,

the number of commits would be correlated with the development team of which our

developer is a member.

When observing values for behavioural attributes within a specific context, anomalous behaviour

can be detected. A data instance may represent a contextual anomaly in one context, while in

another situation, an identical data instance (in behavioural attributes) may be considered normal.

When identifying contextual and behavioural attributes for a contextual anomaly, the previously

mentioned property is a key [18]. An example of a contextual anomaly can be seen in Figure 15.

Figure 15 Number of commits per month

24

3.2.3 Collective anomaly

When a collection of related data instances behaves irregularly in relation to the overall dataset, it

is referred to as a collective anomaly. It is possible that an individual data instance is not an anomaly

in and of itself but is labelled as such because it is part of a collection. Some authors also refer to

collective anomalies as contextual anomalies based on the idea that we can look at the whole

collective pattern of the data stream with contextual incorporation [19]. In our example, we could

try to find collective anomalies if we would look at the source code commits of the entire team

each day, as seen in Figure 16.

Figure 16 Number of commits per day

3.3 Detection in machine learning

Detection of anomalies when analysing deviations from normal behavioural patterns on different

datasets is a non-trivial task. Based on available data labels which denote whether a data instance

is normal or anomalous, we can conduct anomaly detection techniques with three different

models.

3.3.1 Supervised anomaly detection

To train in supervised mode, a training dataset with labelled instances for both normal and

anomalous classes is needed. Building a predictive model for normal vs. anomalous classes is a

common strategy in these situations. Any data instance that has not been seen is compared to the

model to identify which class it belongs to. In supervised anomaly detection, two fundamental

25

challenges arise. To begin, there are considerably fewer anomalous examples in the training data

than there are normal cases. Ingredients for the performance of supervised anomaly detection are

presented in Figure 17.

Figure 17 Supervised anomaly detection

Second, getting correct and representative labels, particularly for the anomaly class, can be difficult.

In article [18], the author mentioned several strategies developed to inject false anomalies into a

regular dataset to acquire a labelled training dataset. Apart from these two concerns, the problem

of supervised anomaly detection is comparable to that of creating predictive models.

3.3.2 Semi-supervised anomaly detection

The basic assumption for the semi-supervised technique is that most of the data come from the

same (unknown) distribution, which we refer to as the normal part of the data. A few observations,

on the other hand, come from different distributions and are classified as anomalies. For example,

a spacecraft’s fault detection or network attacks can produce anomalies that cannot be sampled

but can represent an accident or attack on a system. As computer systems become more

sophisticated, relying on the availability of labelled datasets will be increasingly difficult. Ingredients

for the performance of semi-supervised anomaly detection are presented in Figure 18.

Figure 18 Semi-supervised anomaly detection

26

3.3.3 Unsupervised anomaly detection

This technique receives a large dataset with mostly normal elements, yet there are outliers buried

inside the dataset. A distinction between a training and test dataset is not made. The concept is

that an unsupervised anomaly detection system scores data only on the dataset's particular

characteristics. Distances or densities are commonly used to determine what is normal and what is

an outlier [24]. The ability to process a large amount of data is a major advantage of the

unsupervised anomaly detection process. The unsupervised technique is the most flexible

approach, which does not require any labels, which can semi-automate the manual inspection of

data and help analysts to focus on the suspicious elements of data instead of determining the

deviation boundary to separate normal from anomalous data [25]. Ingredients for the performance

of unsupervised anomaly detection are presented in Figure 19.

Figure 19 Unsupervised anomaly detection

3.4 Output of anomaly detection

How anomalies are reported is a key aspect of any anomaly detection technique. Anomaly

detection systems typically provide one of the following two sorts of output [18]. Firstly, a label can

be used to indicate whether an instance is anomalous or normal [24]. Secondly, a score or

confidence value that indicates the extent of the anomaly can be more informative [24].

The sort of output is conditional on the technique used for the anomaly detection algorithm.

Labels are often used for supervised anomaly detection since they are used together with

classification algorithms, their value is often binary. Scores, on the other hand, are more common

in semi-supervised and unsupervised anomaly detection algorithms. This is primarily due to

practical concerns, as programmes frequently rank anomalies and only show the user the top

abnormalities. Scores allow the analyst to determine thresholds in a specific domain, to select

relevant anomalies.

27

Chapter Ⅳ

4 SOLUTION

Autoencoders are a type of NN which may be applied in unsupervised anomaly detection. We shall

get to know them better in the following chapter.

4.1 Autoencoders for anomaly detection

An autoencoder is a specific type of NN in which the dimensions of input and output are the same,

e.g., if we put an image of size 50x50 pixels into an autoencoder model, we will get an output with

the same dimensions. We can say that an autoencoder is a replicator neural network since it

replicates data from the input to the output in an unsupervised way. By sending the input through

the NN, the autoencoder reconstructs each dimension of the input (Figure 20). It may appear trivial

to use a neural network to replicate an input, however, the size of the input is reduced during the

replication process, resulting in a smaller representation (latent space). In comparison to the input

and output layers, the hidden layers of the NN have fewer units. As a result, the reduced

representation of the input is stored in the hidden layers. This reduced representation of the input

is used to generate the output [26].

28

4.1.1 Architecture of autoencoders

An autoencoder is made up of three parts:

▪ Encoder: Is a fully connected, feedforward neural network that compresses the input

image into a latent space representation and encodes it as a compressed representation

in a lower dimension. The deformed representation of the original input is the

compressed data.

▪ Latent space: The reduced representation of the input that is supplied to the decoder is

stored in this section of the network.

▪ Decoder: Like the encoder, the decoder is a feedforward network with a structure that

mirrors the encoder. This network is in charge of reconstructing the input from the code

to its original dimensions.

The encoder and decoder are defined as transitions 𝜙 and 𝜓, such that:

𝜙: Χ → Υ (encoder)

ψ: Υ → Χ (decoder)

ϕ, ψ = arg min
Φ,𝜓

‖𝜒 − (𝜓 ∘ 𝜙)𝜒‖2

Figure 20 The input image is encoded to a compressed representation and then decoded

Compression and decompression functions have three main properties such as they are data-

specific, which means that they can only compress data efficiently if it is similar to the data that

they have been trained on, e.g. an autoencoder trained on pictures of cars would do a rather poor

job of compressing pictures of flowers. This is due to the fact that the features it learnt are car-

specific. Another property marks the autoencoder's functions as lossy, because their output

degrades the original input, due to the fact during the learning phase, a model reduces the original

input to a latent space, from which it later attempts to reconstruct the output. Since all original

details of the data cannot be represented in the reduced dimensions of the latent space, a loss

results during reconstruction. The distance function is used to compute the difference between the

29

input and reconstructed data to minimise the reconstruction loss. Weights are adjusted based on

the result. We need to define a distance function between the information loss when building a

compressed representation of the input data and the decompressed representation to reduce the

reconstruction loss. The lower it is, the better the model is. Automatic learning from data examples

is another property of the autoencoder's function. This can be very useful when considering that

we just need appropriate training data with which to train a model which we want to perform well

on a specific type of input without any new engineering.

4.1.2 Depth of model

Many autoencoders are trained with a single layer encoder and decoder, however, using deep

(multiple hidden layers) encoders and decoders renders numerous benefits.

▪ Depth can exponentially reduce the required quantity of training data [13].

▪ Deep autoencoders produce superior compression than shallow or linear autoencoders in

tests (e.g. memorisation in convolutional autoencoders [27]).

▪ Depth can exponentially reduce the computational cost [13].

4.1.3 Types of autoencoders

To avoid autoencoders from learning the identity function and to improve their ability to collect

essential information and learn richer representations, a variety of approaches are available. A few

examples are:

▪ Shallow Autoencoders

▪ Deep Autoencoders

▪ Stacked Autoencoders

▪ Sparse Autoencoders

▪ Denoising Autoencoders

▪ Variational Autoencoders

▪ Beta Variational Autoencoders

▪ Vector-Quantised Variational Autoencoders

Each of them has its unique use cases. A good article explaining the differences between them can

be found here [28].

30

4.1.4 Applications of autoencoders

The autoencoder can be used to learn a representation for a variety of purposes.

Many new autoencoder architectures can be created by merging or modifying existing models for

a variety of applications. Some autoencoder applications are listed below.

• Anomaly detection

The idea behind using autoencoders for these tasks is that a trained autoencoder will learn the

latent subspace of normal samples. Once trained it would have a low reconstruction error for

normal data and a high reconstruction error for anomalies. However, recent research has revealed

that certain autoencoding models are not capable of reliably detecting anomalies, even though

they can be very good at recreating anomalous samples [29].

• Classification

While autoencoders are trained in an unsupervised environment (without labels), they can also be

utilised in a semi-supervised environment (with labels on part of the data) to improve classification

results. The encoder is "plugged" into a classification network and used as a feature extractor in

this situation. This is most commonly done in a semi-supervised learning environment, in which a

big dataset is provided for a supervised learning task, but only a tiny fraction of it is labelled. The

fundamental assumption is that samples with the same label should correspond to some latent

presentation that the latent layer of autoencoders can approximate [26]. They share similar

characteristics of patterns in data (similar to anomaly detection methods). To use this setup in

practice, the autoencoder is first trained with the unsupervised technique. The next step is to set

aside a decoder (or used in parallel) and use an encoder as the initial part of a classification model.

The final result can be viewed in Figure 21.

31

Figure 21 Example of autoencoder usage in semi-supervised technique

• Clustering

Clustering is an unsupervised task in which the goal is to divide data into groups with samples that

are similar to each other but different from samples in other groups. Since the majority of clustering

techniques are dimensionality-sensitive and suffer from the curse of dimensionality, the authors of

the following paper [26] pointed out an example in which the data was assumed to have some low-

dimensional latent representation, autoencoders can be used to calculate such representations for

data with fewer characteristics. Similar to the classification approach, a model is built. Furthermore,

each data point's latent representation (the encoder's output) is then saved and used as the input

for any clustering method.

• Popularity prediction

A stacked autoencoder system recently showed promise in forecasting the popularity of social

media posts, which can be useful for online advertising techniques. They used a stacked

autoencoder followed by a multilayer perceptron network. Authors of research [30] used available

metadata from the user's account and published posts. Even due to the complexity of such a NN

model, they have shown that it can be utilised for commercial applications. One of the commercial

applications would be predicting the popularity of the next sponsored articles, and therefore help

with price-fixing for the post.

32

• Image processing

Autoencoders have characteristics that are beneficial in image processing. We can use them for

lossy image compression, where they become competitive with other compression algorithms [31],

or in more demanding applications, such as medical imaging. Autoencoders have been utilised for

image denoising [32] as well as super-resolution [33]. The key information for such applications is

usually found in the latent space of the autoencoder.

4.2 Evolutionary neural networks

Deep learning, in which neural network weights are taught via stochastic gradient descent versions,

has received a lot of attention in recent machine learning. With the rise of computational

capabilities (including the increased speed of GPUs) and large datasets, a different approach arises

from the area of neuroevolution, which uses evolutionary algorithms to optimise neural networks,

and is inspired by the idea that real brains are the result of evolution. Learning neural network

building blocks (for example, activation functions, hyperparameters, designs), and even the

methods for learning themselves are all possible with neuroevolution, while most neural learning

techniques simply focus on changing the strength of neural connections (i.e., their connection

weights). As mentioned in paper [34] deep learning and deep reinforcement learning differ from

neuroevolution in that, these maintain a population of solutions during a search, allowing for

extreme exploration and huge parallelisation. Evolutionary NNs are powerful, especially

in applications of reinforcement learning, evolutionary robots, and attempts to create artificial life

in a digital world [35].

4.2.1 Evolutionary computation

Evolutionary computation (EC) is a method of engineering and optimisation in which solutions are

created through processes modelled after Darwinian evolution rather than being built from first

principles. One of the main methodologies in what is known as "nature-inspired computing" is

evolutionary computation. As described in the book [36], if we take a look at technical terms,

evolutionary computation is an example of a heuristic search, or search by trial and error, where

the (trials) in EC are potential solutions, and the (error) is the measurement of how distant a trial is

from the desired outcome. When creating new trials, the error is used to help determine which trial

will be used next. The general guideline is that the best way to further minimise error is to create

new trials by modifying the prior trials with the lowest errors.

33

The first step in an EC algorithm is to create a population of individuals that represent possible

solutions to the problem. The initial population could be generated at random or by feeding it into

an algorithm. Individuals are assessed using a fitness function, with the outcome indicating how

effectively they solve or come near to solving the task. Individuals are then subjected to operators

inspired by natural evolution, such as crossover, mutation, selection, and reproduction. A new

population is generated based on the fitness values of newly evolved individuals. Some individuals

are culled to maintain the population size, as is the case in nature. This process continues until the

criterion for termination is met. The most common criterion for stopping the algorithm is when it

reaches the specified number of generations. As a result, the best individual with the greatest

fitness value is chosen [36], [37].

The general steps of EC are as follows:

initialise population
evaluate the fitness value of each individual
while the optimal solution is not found and
 the number of generations defined is not reached
 select parents
 apply genetic operators to the selected individuals
 evaluate fitness values of new individuals
 select individuals for the next generation
end while
return the best individual

The problem to be solved usually determines in an obvious way what the search space is, and what

the objective function is. The chapter Evolutionary Computation in book [36] gives us an example

if one wants to discover the largest value of 𝑓(𝑥, 𝑦) = sin(𝑥2 + 2𝑥 − 3) cos(−2𝑦 + 𝑦2 + 1) on

the intervals −1 ≤ 𝑥 ≤ 1 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 1, with intervals representing a search space and the

objective function f(x,y) itself.

 Suppose we translate this mathematical example to the field of EANN (evolutionary artificial neural

networks) which map input to the desired output. In that case, we could say that the search space

is a set of weights and topology of the network connections. Furthermore, the objective function

represents how closely the candidate's map matches the desired map using the closeness of a test

set of inputs such as a medium squared error.

34

4.2.2 Swarm intelligence

Swarm intelligence (SI) is a type of computational intelligence technique used to solve complex

problems such as optimisation, routing or decision-making. Scientists once again looked to nature

for inspiration when developing complex techniques and algorithms for problem-solving.

SI involves a collective study of how individuals in a population interact with one another at the

local level. Agents follow simple rules, and there is no centralised control system in place to predict

the behaviour of individual agents. The random iteration of a specific degree between the agents

results in emergent “intelligent” behaviour that is unknown to individual agents. Algorithms based

on these characteristics are members of the SI algorithm family. Many surveys in recent years have

demonstrated how promising these algorithms are for solving issues in a variety of disciplines [38,

p. 17], [39], [40]. Many swarm intelligence algorithms have been proposed as a result of the

popularity of this research topic. Particle Swarm Optimisation (PSO), Artificial Bee Colony (ABC),

and Ant Colony Optimisation (ACO) are a few examples. A comprehensive review of the majority of

them was conducted in the following paper [41]. Let us take a closer look at ACO.

4.2.3 Ant colony optimisation

Ants are eusocial insects that live in colonies of up to hundreds of millions of workers. Due to the

intricate activity that occurs in ant colonies, several studies have been undertaken to better

understand the collective behaviour of ants. A French researcher named Grassé identified an

indirect form of communication among ants. Individual communication, or stigmergy, as he called

it [42] is pheromonal and only accessible locally. He noticed that the results of these reactions could

operate as additional significant triggers for both the producing insect and the colony's other

members.

Following are the two primary characteristics of stigmergy that set it apart from other forms of

communication [42].

• Stigmergy is an indirect, non-symbolic method of communication mediated by

pheromone traces deposited in the environment: insects share information by affecting

their environment.

• Stigmergic information is local: it can only be retrieved by insects that visit the location

where it was deposited (or its immediate neighbourhood).

Individual-to-individual and individual-to-environment interactions appear to be more complex.

These complex behaviours are the result of the collective behaviour of very undemanding

35

individuals [43]. In the context of collective behaviour, eusocial insects are essentially incentive and

response agents. The individual performs simple basic measures involving chance based on the

information perceived in the local environment. Despite their individual simplicity, colonies of

eusocial insects comprise a highly structured social superorganism. Deneubourg thoroughly

researched ant pheromone deposition and the resulting behaviour. From that research also the

famous double bridge experiment was conducted [42], [44].

• Example for better understanding of ACO

Demonstration of pheromone usage in the ant colony, when searching for food.

Let us look at an example from the following paper [45]. Consider the following scenario: there are

two ways to return food back to colony. There is no pheromone on the ground at first. As a result,

the likelihood of picking either of these two paths is equal, i.e. 50%. Consider two ants who pick

two alternative paths to get the meal, each with a fifty-fifty chance of success.

Figure 22 Two ants travel different paths

These two pathways are separated by a significant distance. The ant that takes the shorter path

will arrive at the food source first.

Figure 23 The ant which takes the shortest path, reaches food first

36

It returns to the colony after locating food and carrying some food with it. As it returns, following

its own pheromone trail along its original path, it leaves more pheromone on the ground. The ant

that takes the shortest route to the colony will arrive first.

Figure 24 On the way back to the nest, the path is marked again by pheromone

The colony (superorganism) is exploring the phase space of food gathering possibilities. The

deposited pheromone signal accumulates upon the shorter path more quickly than on the longer

path, because more ants have travelled the shorter path in the same amount of time. At some

point, a tipping point occurs and most of the following ants take the shorter (more densely

pheromone-laden) path.

Figure 25 The third ant will travel along the path with the greatest loading of pheromone

When the ant that took the longer path returns to the colony, other ants had already taken the

path with the greater pheromone load. When another ant attempts to reach the colony's target

(food), it will discover that a shorter path has a greater loading of pheromone. As a result, it chooses

37

the path with the greatest load of pheromone, which is also the shortest path. Let us look at the

options and pick the best one (in the picture below).

Figure 26 After both paths are marked with pheromone, ants will more likely choose the shortest path

After multiple repetitions of this process, the shorter path has a greater pheromone loading and

an increased chance of being followed, and all ants will take the shorter path the next time.

Figure 27 After multiple iterations, the most used path will have a greater pheromone loading

4.2.3.1 ACO algorithm

When a biological ant is converted into an artificial one, we may describe it as a basic computational

agent the goal of which is to find the best solution to a given optimisation problem. When using the

ant colony example, the optimisation problem must be transformed. Its artificial representation

must be expressed on a weighted graph, by which agents can find the shortest path. Following are

the steps of an algorithm as described in this paper [43].

When applying the first step of the algorithm, the generateSolutions() method is used to build a

solution to the problem. The colony of ants is used to visit the edges of the graph and seeks

solutions. When a solution is found, the next stage for the pheromone update is executed.

38

The pheromoneUpdate() method alters the pheromone trails during the pheromone update stage.

While ants discover better solutions, the pheromone values on these paths increase, while the

pheromone traces on worse pathways reduce to avoid local convergence. In practice, altering

pheromone loadings improves the chance of paths that have been identified as suitable options

being reused.

The last step is the daemonActions() method, which uses centralised measures that cannot be

performed by a single ant. A daemonic mechanism is the activation of local optimisations or the

selection of global information to determine if pheromone loadings need to be increased, and along

which pathways. This phase is not necessary for all versions of the ACO algorithm.

The basic ACO algorithm is shown in pseudocode (below) and consists of the three main steps

described above, with a loop which is run until the condition is met.

procedure ACO_MetaHeuristic is

 while not terminated do

 generateSolutions()

 pheromoneUpdate()

 daemonActions()

 repeat

end procedure

4.3 Evolutionary autoencoders

As mentioned in paper [46], autoencoders are a type of unsupervised deep learning approach that

may be used for a variety of tasks, including information retrieval (e.g., image search), image

denoising, machine translation, and feature selection. These applications are feasible because the

autoencoder learns to condense key information about the environment. With the wider usage of

autoencoders, a challenge arises. When the application's domain is changed, such as from image

denoising to feature selection, it is frequently the case that it is difficult to determine which network

design or network characteristics must be altered or changed for the new application usage.

The time necessary to train the network plus the lack of insight as to how the various layer types

and hyper-parameters will interact with each other makes designing a neural network challenging.

A response to this issue has been addressed lately [47]–[49], with which computer scientists are

trying to build an efficient NAS algorithm to find the optimum between search time (resources) for

39

NN architecture and reconstructed error of a generated NN. For example, one recently proposed

evolutionary method is the evolutionary autoencoder (EvoAE) [47], the main objective of which is

to speed up the training of autoencoders when constructing a DNN. EvoAE evolves a population of

autoencoders by learning a characteristic of each model in the form of hidden nodes. The

evaluation of autoencoders is measured by their reconstruction quality. Crossover and mutation

are used to generate the new autoencoders, in which the chromosome represents a hidden node

and associated weights and connections. With that technique, human intervention in the

construction of NNs is reduced. The authors have condensed the entire algorithm into four steps

which are executed in each generation:

a. Selection of autoencoder pairs by reconstruction error and fitness value.

b. Crossover to generate two new autoencoders; children inherit the characteristics of both

parents such as hidden nodes and associated weights.

c. Mutation operator which under a given mutation rate adds or deletes a node from an

autoencoder.

d. Usage of backpropagation to minimise reconstruction error for each child.

With this kind of method, we can significantly improve the architecture search for our domain-

specific problem. As the authors have mentioned, there is much future work to be done in this field.

We have used similar concepts when building a NAS algorithm in the following experimental

chapter.

40

Chapter Ⅴ

5 IMPLEMENTATION

In this section, we will present the practical implementation of the NAS system by the code name

AutoDaedalus1, which aims to discover the best performing autoencoder architecture, when

identifying the anomalies in a dataset. We will start with an explanation of why such auto systems

are becoming increasingly important when building a NN for a variety of problems in multiple

domains. With our work, we want to predominantly move all the manual effort of setting the

hyperparameters of a NN model, building a topology of a NN model from a human engineer to a

NAS system, which is limited only by the configuration settings set by the human operator. We are

one of the first to combine concepts such as the NAS system that builds models with ACO algorithm

to identify anomalies with an autoencoder. Work was done as a fork of an existing open-source

research project by the code name DeepSwarm [50], which we see as a great starting point when

developing SI for NAS. Our implementation was limited by computational, and human resources.

5.1 Limitations

Our research project was limited by the following three factors:

• Computational resources

For development and training environment we used the Razer Blade 15 Advanced (Early 2021

model - RZ09-036) with Intel i7-10875H CPU, Nvidia GeForce RTX 3080 8 GB 6144 CUDA cores GPU,

and 32 GB RAM.

1 https://github.com/SasoPavlic/AutoDaedalus

https://github.com/SasoPavlic/AutoDaedalus

41

• Human resources and time scope

Work was done during the course of 5 months, starting from an open-source DeepSwarm project

to a final working prototype and experiment, by a single student software developer under the

supervision of a professor mentor.

5.2 AutoDaedalus scope

The AutoDaedalus project is limited by the type of NN it can build. This is mainly because we are

focusing on building an unsupervised model which should be able to create a logical border

between normal data instances and anomalies. For this task we have chosen an autoencoder NN.

Although autoencoder structures can be formed in a variety of ways, we have focused on shallow

and deep autoencoders with fully connected layers. Furthermore, AutoDaedalus generates NN

models based on the configuration file specified by a human operator. Once the model architecture

is generated it trains and is evaluated on the MNIST dataset with parameters defined in a

configuration file.

5.3 Tools and frameworks

For software development, we have used the following:

• DL frameworks

When it came to choosing DL frameworks, we began with the low-level, such as Tensorflow, which

is intended primarily for professional and expert use in creating neural models, where things are

based on lower-level implementation, which in practice means that we must be familiar with all of

the components when using it. We used Tensorflow exclusively as our backend, with the high-level

DL framework Keras on top, to simplify the process of constructing the NN models that can be

consumed by the AutoDaedalus project functions. The key advantage of using Keras is how simple

it is to construct and train a model, and then evaluate it.

Since we had at our disposal one of the best laptop GPUs available at the time, we needed to make

sure our NN models could train and run on it. To make this possible we needed to install the Nvidia

CUDA. The CUDA platform is a software layer that allows computing kernels to have direct access

to the GPU's virtual instruction set and parallel computational components [51].

42

• Programming language

Python 3.8.X was used as a key tool for data processing, developing scripts, displaying plots, and

deep learning. Together with the great set of packages and strong online community support, it is

one of the preferred options in data science.

• Packages

Python packages used: Pyaml, Scikit-Learn, Matplotlib, Numpy, Tensorflow, Keras

Ubuntu packages used: Lambda stack, which provides a one-line installation and management of

popular Linux AI software [52].

43

5.4 AutoDaedalus workflow

Since AutoDaedalus attempts to simulate the entire workflow of a human engineer, when it comes

to designing a NN model, the entire workflow of a programme is divided into multiple parts. Each

of them takes over the settings which are passed as parameters from the configuration file. This

kind of process allows the human operator to control all the puzzles from a single-entry point, such

as settings for the dataset, DeepSwarm object, and NN layers types to be used. Figure 28 shows the

flowchart of the main AutoDaedalus components.

Figure 28 AutoDaedalus flowchart of main components

44

Following are explanations of the main components in the entire workflow of NAS, ACO, and usage

of the autoencoder to detect anomalies.

5.4.1 Configuration file setup

It all starts with the configuration file which controls the workflow during run time. It aims to set

the edge boundaries of NAS when generating architectures as well as defining the data instances

that represent normal instances and anomalies. All these settings and others are grouped into three

main sets.

DataConfig:
 valid_label: [1,7,8,9] # Values representing normal instances
 anomaly_label: [0] # Values representing anomalous instances
 contamination: 0.01 # Amount of anomalies in a dataset in %
 test_size: 0.2 # Ratio between train and test dataset size
 random_state: 42 # State of the random number generator

DeepSwarm: # DeepSwarm object responsible for providing a user-facing
interface
 save_folder:
 metrics: accuracy # Metrics to evaluate the models
 max_depth: 10 # Maximum and a minimum depth of hidden layers
 min_depth: 1 # on one side of the Autoencoder
 reuse_patience: 1 # Number of times weight can be reused

 aco: # Ant colony optimisation object
 pheromone:
 start: 0.1 # Starting pheromone value
 decay: 0.1 # Local pheromone decay
 evaporation: 0.1 # Global pheromone decay
 verbose: 1 # Logging components
 greediness: 0.50 # Greediness of ants
 ant_count: 10 # Maximum amount of ants (models)
 latent_dim: 16 # Dimension of compressed space in Autoencoder

 anomaly:
 quantile: 0.98 # Instance out of this quantile are anomalies

 backend:
 epochs: 75 # Number of epochs per ant (model)
 batch_size: 32 # Number of batches in epoch per ant (model)
 patience: 5 # Early stopping during the training
 verbose: 1 # Logging components
 optimiser: adam # Optimiser for training
 loss: binary_crossentropy # Loss function for training

45

Nodes: # Layers types used when building the topology

 InputNode: # First layer in encoder model
 type: Input # Type of layer in Keras
 attributes:
 shape: [!!python/tuple [28, 28, 1]]# Shape of input
 transitions:
 DenseNode: 1.0 # Transition possibility for next layer

 InputDecoderNode: # First layer in decoder model
 type: Input
 attributes:
 shape: [!!python/tuple [14]] # Shape of output
 transitions:
 DenseNode: 1.0

 FlattenNode: # Flatten layer before latent space in Autoencoder
 type: Flatten
 attributes: { }
 transitions:
 DenseNode: 1.0

 ReShapeNode: # Layer used when decoding back from latent space
 type: Reshape
 attributes:
 target_shape: [!!python/tuple [7, 7, 1]]
 transitions:
 DenseNode: 1.0

 DenseNode: # Hidden layer in autoencoder
 type: Dense
 attributes:
 output_size: [128, 64, 32, 16, 8, 4, 2]
 activation: [ReLU, LeakyReLU,Tanh]
 transitions:
 DenseNode: 0.2
 DenseNode2: 0.3
 DenseNode3: 0.1
 DenseNode4: 0.1
 DenseNode5: 0.3

 DenseNode2: # Hidden layer in autoencoder
 type: Dense
 attributes:
 output_size: [128, 2]
 activation: [ReLU, LeakyReLU,Tanh]
 transitions:
 DenseNode: 0.2
 DenseNode2: 0.2
 DenseNode3: 0.2
 DenseNode4: 0.2
 DenseNode5: 0.2

46

 DenseNode3: # Hidden layer in autoencoder
 type: Dense
 attributes:
 output_size: [32, 16, 8, 4]
 activation: [ReLU, LeakyReLU]
 transitions:
 DenseNode: 0.1
 DenseNode2: 0.1
 DenseNode3: 0.4
 DenseNode4: 0.2
 DenseNode5: 0.2

 DenseNode4: # Hidden layer in autoencoder
 type: Dense
 attributes:
 output_size: [128]
 activation: [ReLU, LeakyReLU,Tanh]
 transitions:
 DenseNode: 0.4
 DenseNode2: 0.1
 DenseNode3: 0.1
 DenseNode4: 0.1
 DenseNode5: 0.3

 DenseNode5: # Hidden layer in autoencoder
 type: Dense
 attributes:
 output_size: [2]
 activation: [ReLU, LeakyReLU,Tanh]
 transitions:
 DenseNode: 0.2
 DenseNode2: 0.1
 DenseNode3: 0.3
 DenseNode4: 0.3
 DenseNode5: 0.2

 OutputNode: # Final output layer in decoder model
 type: Output
 attributes:
 output_size: [1]
 activation: [Sigmoid]
 transitions: {}

47

5.4.2 Preparation of the dataset

The dataset used in AutoDaedalus needs to be set up for unsupervised learning. The dataset needs

to have both normal and anomalous data instances without any labels denoting the class of an

instance. When it comes to selecting the right data instances, parameters from the configuration

file are passed. The valid_label contains an array of labels that represent the normal ones, on

the other hand, the anomaly_label represents an array of anomalous ones. Before choosing

actual data instances, the contamination parameter is passed alongside as well. With it, we

determinate the number of anomalous instances in the final trainable dataset. An example of a

build dataset can be seen in Figure 29.

Figure 29 Dataset ratio between normal and anomalous data instances

Once we have both types of data instances in place, we shuffle the dataset and split it to train and

test the dataset according to the test_size parameter as seen in Figure 30.

48

Figure 30 Split of training and testing dataset

5.4.3 Backend initialisation

Our development was done in the Keras framework, to run the application on our low-level

Tensorflow framework which serves as a backend, we need to first initialise it. This is done by calling

the superclass of Tensorflow Keras API. BaseBackend is an abstraction class, which ensures that

all the needed properties are initialised together with methods for the DL process, such as

generate_model, train_model, evaluate_model.

5.4.4 DeepSwarm with ACO

As mentioned before, DeepSwarm is an open-source research project conducted by Edvinas Byla

and Wei Pang [50]. Their contribution to the field of NAS showed great achievements in comparison

to previously published methods. Since their source code was designed to form colonies of ants to

generate convolutional neural networks (CNN), we needed to redesign the majority of the source

code, that is responsible for model topology formation. The reason for this is that the structure or

sequence of the layers which form the CNN model are different from the ones of the autoencoder

model.

Our modified version of the ACO algorithm is as follows. To generate the ant’s path which

represents connections between the NN model, we have implemented two methods. The first one

is generate_encoder_path, which generates an internal graph that includes the input_node

by default. By this, we ensure that whatsoever dataset is pushed into the model, the first layer will

accept it accordingly. After that, a specified number of ants is generated. Whose starting point

49

begins in an input_node. As explained by the authors of DeepSwarm, the ant selects one of the

available nodes in the next layer of the CNN using the ACS selection rule. In our autoencoder

structure scenario, once the next layer is selected, the ant chooses the node's parameters based

on the response of the selection rule. The selection rule is applied based on the possible transitions

each node has and the amount of pheromone used in this process. Transitions represent the

neighboured nodes to which ants can travel. Once an ant reaches the current maximum allowed

depth, Flatten_node flattens the previous layer’s output to a 1D vector. After that, another

Dense layer is added to compress the 1D vector to the desired latent space. At this stage, the Keras

model representation from the current graph would look like Figure 31.

Figure 31 Structure of layers in an encoder

The second method is generate_decoder_path, whose structure is mirrored to that of the

encoder. This time the ant’s path needs to start from where the previous one end. As a result, the

graph begins with the input_layer, whose input shape corresponds to the shape of the latent

space. After the first layer, one Dense and Reshape layers are added. Their purpose is to rebuild

the same vector shape as before it was compressed to the latent_space. Following layers are

added with the same logic as they were in the encoder method. Lastly, we obtain the rebuilt data

as an output. Decoder representation (Figure 32), which matches with the above encoder (Figure

31).

50

Figure 32 Structure of layers in a decoder

 Once the encoder and decoder models are built, the next step is to use them as functional models

as a whole to form an autoencoder model. This can be represented by the following equation:

𝑦 = decoder(𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥)) (9)

where x is the input to the model and y is its reconstruction

The final structure of the autoencoder model with its input_layer, encoder_layer, and

decoder_layer is shown in Figure 33.

Figure 33 Structure of layers in the autoencoder

51

The next step is to apply the local update of used pheromone by ant depending on the specified

layers in the generated model. This cycle continues until ant_count for current_depth is

reached. Once this is done, the ants are sorted by the metrics score they achieve, and if a new best

ant is discovered, this is also updated. The new best ant may then be used to apply a global

pheromone update. At the end of the ACO search algorithm, the best ant is returned to the

DeepSwarm.

5.4.5 Evaluation

The evaluation of an ant is done by running the model it produces. This is done with multiple

matrices which help us to visualise the model’s training and final predicted results of anomalies in

a dataset. Therefore, we can see how the model performed through the training and validation

dataset.

The first metric on our list is the training_loss, which shows the train_loss and val_loss

during the fitting of our model to training data. The value of train_loss is the distance between

the ground truth and the reconstruction. In this combination (training and validation loss) a portion

of training data during each epoch is used as validation, expressed by vall_loss. With this graph,

we can better understand how the model is learning during the learning steps. If the val_loss

starts to increase or is stale, it is better to stop the training to prevent overfitting. Generated plots

are shown in Figure 34.

Figure 34 Training loss metrics

52

The second metric is similar to the previous one, except that it measures the accuracy of the model.

Therefore, we have the combination of train_acc and val_acc to plot on our graph (Figure 35).

At first sight, it might not be clear why we should be interested in accuracy when dealing with the

unsupervised learning model, but our initial aim when training the model is its ability to reconstruct

data as best as possible since this difference between original and reconstructed data will serve as

a threshold for anomaly detection.

Figure 35 Training accuracy metrics

Continuing with the metric is helpful to a human operator who controls the training. It helps to

visualise the results, especially when we are training the model with multiple labels, how the

original image is compressed and decompressed through the NN model. As seen in Figure 36, we

can assume that some data instances can be potentially identified as false anomalies, due to poor

reconstruction by the model, and are therefore prepared for manual inspection. A potential

candidate for inspection is number 7 (third example from the left).

Figure 36 Orginal, compressed, and reconstructed image representation

53

Another metric method that is helpful during the training and final validation is the loss function

MAE_loss which uses mean absolute error (MAE), to compute the squared error between the

original image and the reconstructed image. When calculating it on all data instances we can see

the bar chart showing us number_of_samples that fall into a specific MAE loss value in the

following Figure 37.

Figure 37 MAE loss in training samples

The next metrics are a direct evaluation of the model when it comes to the final goal of the whole

workflow of AutoDaedalus. Starting with the receiver operating characteristic visualisation (ROC).

With it, we can get a good overview of the trade-off between sensitivity (true positive rate (TPR))

and specificity (1 – false-positive rate (FPR)). To calculate the ROC curve, in our scenario we need

to measure how good our model is when it comes to detecting anomalies within a specific quantile

of the dataset. Since all data instances that have greater reconstructed error (measured by MSE)

fall into a specified quantile (specified by anomaly_quantile parameter). With quantile and MSE

values, calculation of which data instances represent anomalies and which ones are normal is

possible. Secondly, the confusion matrix needs to be calculated from the previously determined

normal and anomalous data instances. This is shown in the following Table 2.

54

Actual / Predicted Anomaly Normal

Anomaly TP FN

Normal FP TN

Table 2 Confusion matrix

Where true positive (TP), false negative (FN), false positive (FP), and true negative (TN) are

calculated by the following rule:

𝑇𝑃 = 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑔𝑖𝑣𝑒𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (10)

𝐹𝑁 = 𝑎𝑙𝑙 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 − 𝑇𝑃 (11)

𝐹𝑃 = 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 − 𝑇𝑃 (12)

𝑇𝑁 = 𝑎𝑙𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 − 𝐹𝑃 (13)

From that point calculation of precision, recall and F-score is calculated as well.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(14)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(15)

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(16)

Once all intermediate matrices for ROC are calculated, we can proceed to the next function which

is to calculate TPR, FPR, and needed false negative rate (FNR) and true negative rate (TNR) values

over the range of quantiles [0 … 1]. During quantile range iteration, the threshold for separation

between normal and anomalous data is changed and therefore the values of the matrix table are

changed accordingly. With values in the confusion matrix changed, the following metrics are re-

calculated:

55

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(17)

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(18)

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(19)

𝐹𝑃𝑅 = 1 − 𝑇𝑁𝑅 (20)

Once all mentioned metrics are calculated over the different ranges of quantile, the line for the

ROC curve can be plotted with the associated area under the curve (AUC) score. An example of the

ROC curve is shown as a green-dotted line in Figure 38. From the plot, we can see the correlation

between the TPR and FPR values in the range [0 … 1]. These values are calculated by moving

quantile values on a range [0 … 1] by step 0.01.

Figure 38 ROC curve for autoencoder model

5.4.6 Finding the best model

The best model can be automatically found by providing the desired metric to the configuration

file. Since the term “best” can represent the different metrics for a given dataset and desired

distinction between normal and anomalous data instances, the most appropriate method is still to

manually handpick the model which does the job well in a specific scenario with the help of all

available matrices.

56

Chapter Ⅵ

6 EXPERIMENT

With the experiment, we wanted to see how well a manually built autoencoder detects anomalies

in a dataset compared to the best model generated by our open-source AutoDaedalus project.

Since there are many ways to build an autoencoder architecture, we have set limits to the extent

of the experiment. The same goes for anomaly detection which is specific to the given dataset. The

experiment was an excellent testing technique in software development since it gave us a better

understanding of the components that are required to build a system that is as sophisticated as

AutoDaedalus. One of the main goals of the experiment was to allow other researchers to replicate

the experiment, which is why we included a script in the project that is ready to build the manual

autoencoder by changing the model layers, a separate script that can run a specific model on-

demand, and the ability to save all the generated models and associated matrices in a specified

location on a disk. All of this is beneficial for continuous testing and development.

6.1 Experimental environment

6.1.1 Dataset overview

The MNIST dataset was used for all conducted experiments. The dataset contains 60,000 training

and 10,000 testing small square 28x28 pixel grayscale images. All digits are handwritten and are in

the range [0 … 9]. The distribution of classes in a dataset is seen in Table 3:

57

Value Train count Train % Test count Test %

1 6742 11.24 1135 11.35

7 6265 10.44 1028 10.28

3 6131 10.22 1010 10.1

2 5958 9.93 1032 10.32

9 5949 9.92 1009 10.09

0 5923 9.87 980 9.8

6 5918 9.86 958 9.58

8 5851 9.75 974 9.74

4 5842 9.74 982 9.82

5 5421 9.04 892 8.92

Table 3 MNIST dataset class distribution

Parameter test_size from configuration file was for all experiments set to 0.2 (train : test) with

random_state value set to 42.

6.1.2 Software components

For experimental purposes the following packages, programmes, and frameworks were used:

Library / Frameworks / IDE / Version

Linux kernel 5.11.0-27-generic

Ubuntu 20.04.2 LTS

Tensorflow 2.4.1

Keras 2.3.1

CUDA release 11.1

Python 3.8.10

DeepSwarm 0.09

PyCharm 2021.1.1 (Professional Edition)

Pyyaml 5.3.1

Scikit-learn 0.22.2

Numpy 1.21.2

Seaborn 0.11.1

Table 4 Used software components

58

6.1.3 Types of generated models

All models in the experiments are generated by one of two options. Either they are generated by

the AutoDaedalus programme or they are manually created. Following are the allowed

specifications during the experiment.

• An experimental model can have:

o Allowed types of layers: Input, Dense, Flatten, Reshape

o The dense layer allowed attributes

▪ Output size : [128, 64, 32, 16, 8, 4, 2]

▪ Activation function: ReLU, LeakyReLU, Tanh, Sigmoid

o Optimiser: Adam

o Loss: binary_crossentropy

o Metrics: accuracy, loss

6.1.4 Available matrices

When a model is generated, trained, and evaluated, the following infographics are created for it:

Infographic name Explanation

decoder_shape.png Shape representing decoder model

Encoder_shape.png Shape representing encoder model

Plt_acc.png Plot showing training and validation accuracy

Plt_anomalies_095.png Plot showing found anomalies in quantile = 0.95

Plt_anomalies_098.png Plot showing found anomalies in quantile = 0.98

Plt_anomalies_0995.png Plot showing found anomalies in quantile = 0.995

Plt_encoded_image.png Plot with original, compressed, and decompress image

Plt_loss.png Plot showing training and validation loss

Plt_MAE.png Plot showing MAE loss over a count of samples

Plt_reconstructed_results.png Plot showing an original and decoded image

Roc_curve.png Plot with ROC curve

Autoencoder.yaml The configuration file used to generate a model

Deepswarm.log Entire log during the AutoDaedalus run time

Table 5 Generated infographic per NN model

59

List of information that is logged during the model evaluation:

Logged information for N model

Number of instances in the dataset

The actual number of all anomalies in a dataset

The actual number of all valid labels in a dataset

Number of TP anomalies found in X quantile

TP, FN, FP, TN values

Recall, Precision, F1-score

TPR, FPR, ROC, AUC values

Table 6 Logged information when a model is evaluated

6.2 Example of operational evolutionary NN

Before reviewing the experiment between manually and auto-constructed NN models, let us look

at how AutoDeadalus generates new models. As mentioned in the implementation chapter, it all

starts with the configuration file. For this example, we will set it up to make a NN model capable of

finding anomalies for a single label. This means we set up DataConfig parameters as follows:

DataConfig:

 valid_label: [1]

 anomaly_label: [0]

All others parameters in the configuration file remain as represented in the implementation

chapter. When AutoDaedalus is run, it starts to search for the best-performing model architecture

within the allowed limitations set by the configuration file, such as max_depth, allowed layers,

ant_count per depth. Bellow, we can see the information which is logged once a model is

generated during the search phase.

60

2021-08-20 09:48:24,259

Current search depth: 1

Generating ant: 1

Ant: 0x7fde03e38580

 Loss: 0.047672

 Accuracy: 0.888302

 Path: InputNode(shape:(28, 28, 1)) ->

DenseNode(output_size:32,activation:LeakyReLU) ->

FlattenNode() ->

DenseNode(output_size:16, activation:Tanh) ->

InputDecoderNode(shape:16) ->

DenseNode(output_size:128, activation:Tanh) -> ReShapeNode(target_shape:(7, 7,
1)) ->

DenseNode(output_size:128, activation:Tanh) ->

OutputNode(output_size:1, activation:Sigmoid)

Hash: 5cacabbd674602951179f6482dabd8ed1cfd62b7f9738242d8e320b6d0fc5119

The hash string, which is the universal key identifier when it comes to identifying a generated model

in folders on a disk, may also be found in logged information. Once the model is created, it is

evaluated using all of the matrices listed in Table 5 and Table 6. The above model (ant:

0x7fde03e38580) is the best performing one at the moment (the best ant is calculated based on a

parameter). This model will be the “best ant” until the evolutionary cycle continues and a new best

ant is discovered.

61

2021-08-20 09:59:25,676

New best ant found

===

 Ant: 0x7fde0012edc0

 Loss: 0.046139

 Accuracy: 0.888457

 Path: InputNode(shape:(28, 28, 1)) ->

 DenseNode(output_size:128, activation:ReLU) ->

 FlattenNode() ->

 DenseNode(output_size:16, activation:Tanh) ->

 InputDecoderNode(shape:16) ->

 DenseNode(output_size:64, activation:Tanh) ->

 ReShapeNode(target_shape:(28, 28, 2)) ->

 DenseNode(output_size:64, activation:Tanh) ->

 OutputNode(output_size:1, activation:Sigmoid)

 Hash: 6917d7c05d4c5590cf3a537ee6ce1333019d61a5a3b1d98ec1117b1074e47ecd

Once this happens, the ACO algorithm will replace it with the new one and corresponding measures

will be executed such as update of global pheromone. At the end of set search space, we will have

a collection of all generated models.

62

6.3 Anomaly detection with the help of an evolutionary NN

When explaining anomaly detection, we need to first clearly understand what represents the

anomalies in a given dataset. Anomalies are patterns in data which do not conform with the

characteristics of normal data. Interpreting the previous sentence means that the majority of data

instances must be from one class and the minority from a different class. This is valid only when

training the NN model since at this stage it needs to learn the patterns in data in order to distinguish

between class labels. When testing the model any ratio of normal and anomalous data instances

can be presented, because at this stage the model has already learnt how to distinguish between

the them. When data is pushed into a model with the objective of finding anomalies in the dataset

the following happens:

1. Reconstruction of data instances

2. Calculation of MSE for each data instance

3. Anomaly threshold is calculated based on a list of MSE and quantile limit

4. Each reconstruction is checked to see whether it passes over the threshold or not

5. Detected anomalies are displayed

6. Model performance metrics are saved

An example of anomaly detection is shown in Figure 39.

63

Figure 39 Anomaly detection example

64

6.4 Results

In this section, we present two experiments together with the evaluation and final results.

Experiments are differentiated only by the number of valid labels that are presented in the testing

dataset. Digit classes rules were as follows:

• Single-label experiment

o Valid labels : [1]

o Anomaly labels : [0]

• Multi label experiment

o Valid labels : [1,2,3,4,5,6,7,8,9]

o Anomaly labels : [0]

• Quantile value: 0.9

In both experiments, we wanted to empirically test the model architecture that was generated by

the AutoDaedalus method versus a manually built model, based on our experience and examples

found online. Firstly we tested both methods on a single label experiment and secondly on the multi

label experiment. Created architectures for each tested NN model are presented in the tables

below.

6.4.1 Single label experiment

• Manual autoencoder implementation

Settings used for a manually crafted model:

Maximum depth set to 1:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 128 (ReLU, ReLU)

Table 7 Manual model single label 1 layer

Maximum depth set to 2:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 64 (ReLU, ReLU)

2nd layer 64 16 128 (ReLU, ReLU)

Table 8 Manual model single label 2 layer

65

Maximum depth set to 3:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 32 (ReLU, ReLU)

2nd layer 64 16 64 (ReLU, ReLU)

3rd layer 32 16 128 (ReLU, ReLU)

Table 9 Manual model single label 3 layer

Maximum depth set to 4:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 16 (ReLU, ReLU)

2nd layer 64 16 32 (ReLU, ReLU)

3rd layer 32 16 64 (ReLU, ReLU)

4th layer 16 16 128 (ReLU, ReLU)

Table 10 Manual model single label 4 layer

Maximum depth set to 5:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 4 (ReLU, ReLU)

2nd layer 64 16 16 (ReLU, ReLU)

3rd layer 32 16 32 (ReLU, ReLU)

4th layer 16 16 64 (ReLU, ReLU)

5th layer 4 16 128 (ReLU, ReLU)

Table 11 Manual model single label 5 layer

• AutoDaedalus autoencoder implementation

Settings used for an automatically generated model:

Maximum depth set to 1:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 64 (ReLU, Tanh)

Table 12 AutoDaedalus model single label 1 layer

66

Maximum depth set to 2:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 8 16 2 (LeakyReLU, LeakyReLU)

2nd layer 128 16 2 (LeakyReLU, ReLU)

Table 13 AutoDaedalus model single label 2 layer

Maximum depth set to 3:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 16 (ReLU, Tanh)

2nd layer 2 16 16 (Tanh, Tanh)

3rd layer 2 16 8 (LeakyReLU, Tanh)

Table 14 AutoDaedalus model single label 3 layers

Maximum depth set to 4:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 8 16 64 (Tanh, ReLU)

2nd layer 32 16 32 (LeakyReLU, Tanh)

3rd layer 4 16 4 (ReLU, Tanh)

4th layer 128 16 128 (Tanh, LeakyReLU)

Table 15 AutoDaedalus model single label 4 layers

Maximum depth set to 5:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 64 16 128 (Tanh, Tanh)

2nd layer 4 16 128 (ReLU, ReLU)

3rd layer 4 16 64 (Tanh, ReLU)

4th layer 128 16 16 (ReLU, Tanh)

5th layer 8 16 128 (LeakyReLU, Tanh)

Table 16 AutoDaedalus model single label 5 layers

67

6.4.2 Multi label experiment

• Manual autoencoder implementation

Settings used for a manually crafted model:

Maximum depth set to 1:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 64 16 128 (ReLU, ReLU)

Table 17 Manual model multi label 1 layer

Maximum depth set to 2:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 64 (ReLU, ReLU)

2nd layer 64 16 128 (ReLU, ReLU)

Table 18 Manual model multi label 2 layer

Maximum depth set to 3:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 32 (ReLU, ReLU)

2nd layer 64 16 64 (ReLU, ReLU)

3rd layer 32 16 128 (ReLU, ReLU)

Table 19 Manual model multi label 3 layer

Maximum depth set to 4:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 16 (ReLU, ReLU)

2nd layer 64 16 32 (ReLU, ReLU)

3rd layer 32 16 64 (ReLU, ReLU)

4th layer 16 16 128 (ReLU, ReLU)

Table 20 Manual model multi label 4 layer

68

Maximum depth set to 5:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 4 (ReLU, ReLU)

2nd layer 64 16 16 (ReLU, ReLU)

3rd layer 32 16 32 (ReLU, ReLU)

4th layer 16 16 64 (ReLU, ReLU)

5th layer 4 16 128 (ReLU, ReLU)

Table 21 Manual model multi label 5 layer

• AutoDaedalus autoencoder implementation

Settings used for an automatically generated model:

Maximum depth set to 1:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 64 16 32 (Tanh, LeakyReLU)

Table 22 Figure 55 AutoDaedalus multi label 1 layer

Maximum depth set to 2:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 2 16 2 (Tanh, LeakyReLU)

2nd layer 64 16 2 (ReLU, LeakyReLU)

Table 23 Figure 55 AutoDaedalus multi label 2 layer

Maximum depth set to 3:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 4 16 2 (ReLU, Tanh)

2nd layer 4 16 8 (LeakyReLU, Tanh)

3rd layer 16 16 128 (LeakyReLU, ReLU)

Table 24 Figure 55 AutoDaedalus multi label 3 layer

69

Maximum depth set to 4:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 128 16 4 (Tanh, LeakyReLU)

2nd layer 128 16 128 (Tanh, Tanh)

3rd layer 2 16 16 (ReLU, Tanh)

4th layer 8 16 4 (LeakyReLU, ReLU)

Table 25 Figure 55 AutoDaedalus multi label 4 layer

Maximum depth set to 5:

Depths / Parameters Encoder Latent space Decoder Activation

1st layer 32 16 2 (LeakyReLU, Tanh)

2nd layer 8 16 8 (ReLU, LeakyReLU)

3rd layer 64 16 128 (ReLU, LeakyReLU)

4th layer 4 16 8 (Tanh, Tanh)

5th layer 8 16 2 (LeakyReLU, Tanh)

Table 26 Figure 55 AutoDaedalus multi label 5 layer

6.4.3 Comparison of methods

After both of the tested methods gave us results for each best NN model of a given depth, the next

step was to compare different results based on available metrics. Because the majority of our

metrics are based on anomaly detection outcomes, our primary goal was to discover a better

performing method on our dataset for each experiment.

Let us begin with the single-label experiment. The given results are from the above NN models

presented in tables: Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table

15, Table 16.

70

NN Model Depth on one side Recall Precision F1-score AUC

Manual method 1 0.215 0.995 0.354 0.997

Manual method 2 0.215 0.995 0.354 0.997

Manual method 3 0.246 1.000 0.356 0.997

Manual method 4 0.216 1.000 0.356 0.998

Manual method 5 0.214 0.991 0.352 0.997

Max 0.246 1.000 0.356 0.998

Total 1.106 4.981 1.772 4.986

Table 27 Single label experiments result for the manual method

Figure 40 ROC curve of the best performing model produced by the manual method in the single label

experiment

71

NN Model Depth on one side Recall Precision F1-score AUC

AutoDaedalus method 1 0.213 0.986 0.351 0.991

AutoDaedalus method 2 0.212 0.981 0.349 0.991

AutoDaedalus method 3 0.215 0.995 0.354 0.992

AutoDaedalus method 4 0.213 0.986 0.351 0.992

AutoDaedalus method 5 0.213 0.986 0.351 0.990

Max 0.215 0.995 0.354 0.992

Total 1.066 4.934 1.756 4.956

Table 28 Single label experiment results of the AutoDaedalus method

Figure 41 ROC curve of best performing model produced by the AutoDaedalus method in a single label

experiment

When comparing the results of Table 27 and Table 28, we can see that both methods rendered very

similar results in the single label experiment. Even the ROC curves in Figure 40 and Figure 41 show

very similar results. This is mostly due to the fact, that both of them are close to perfection. This

means that both experimental methods are able to distinguish between normal and anomalous

72

data instances with very high certainty. One of the reasons for such good results is the big difference

between the normal and anomalous data instances that were compared, with 1 and 0 digits having

a clear difference in shape and structure. Looking a little more critically at these tables, we see that

the manual method performed a bit better in this experiment. The largest difference was in the

recall metric and AUC score. Aside from that, we can say with strong confidence that both methods

performed very well with our selected dataset.

The second experiment was designed to have a more complex dataset. The reason for this is that

we wanted to ensure that the small difference between the two methods in the first experiment

grew larger. Furthermore, datasets with multiple number labels in the valid class and a single

number label in the anomaly class are thought to be more realistic. Since even human experts are

unable to define rules that apply only to anomalies in real-world applications. Results from multi

label experiments with the above NN models are presented in tables: Table 17, Table 18, Table 19,

Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26. Results from the multi label

experiment are shown below.

NN Model Depth on one side Recall Precision F1-score AUC

Manual method 1 0.223 0.219 0.221 0.748

Manual method 2 0.199 0.195 0.197 0.731

Manual method 3 0.191 0.187 0.189 0.729

Manual method 4 0.202 0.198 0.200 0.759

Manual method 5 0.218 0.214 0.216 0.776

Max 0.223 0.219 0.221 0.776

Total 1.033 1.013 1.023 3.743

Table 29 Multi label experiments result for a manual method

73

Figure 42 ROC curve of the best performing model produced by the manual method in the multi label

experiment

NN Model Depth on one side Recall Precision F1-score AUC

AutoDaedalus method 1 0.208 0.204 0.206 0.751

AutoDaedalus method 2 0.194 0.190 0.192 0.745

AutoDaedalus method 3 0.212 0.208 0.210 0.780

AutoDaedalus method 4 0.193 0.189 0.191 0.776

AutoDaedalus method 5 0.501 0.491 0.496 0.877

Max 0.501 0.491 0.496 0.877

Total 1.308 1.282 1.295 3.929

Table 30 Multi label experiments result for the AutoDaedalus method

74

Figure 43 ROC curve of the best performing model produced by the AutoDaedalus method in the multi label

experiment

This experiment was more computationally intensive and thus executed for a much longer period,

especially when AutoDaedalus needed to find the best performing models out of 50 models

(max_depth=5, ant_count=10). Nevertheless, the experiment furnished us with very

interesting results. Looking at Table 29 and Table 30, we can say that both methods proved

themselves with relatively good results, but in the end, AutoDaedalus rendered the better-

performing NN model. As we can see all of the metrics were better when compared to the manual

method. Also, the ROC curves in Figure 42 and Figure 43 show that the best AutoDaedalus model

outperforms the best manually built model. When comparing the slopes of the curves, we can see

that the one in Figure 43 is steeper than the one in Figure 42. As a result, TPR becomes bigger faster

with fewer data instances compared to FPR, and therefore more correctly identified anomalies in

the dataset.

75

The results from both experiments are presented in Table 31 and Figure 44.

NN Model Experiment Calculation Recall Precision F1-score AUC

Manual method Single label MAX 0.246 1.00 0.356 0.998

Manual method Single label TOTAL 1.106 4.981 1.772 4.986

Manual method Multi label MAX 0.223 0.219 0.221 0.776

Manual method Multi label TOTAL 1.033 1.013 1.023 3.743

AutoDaedalus method Single label MAX 0.215 0.995 0.354 0.992

AutoDaedalus method Single label TOTAL 1.066 4.934 1.756 4.956

AutoDaedalus method Multi label MAX 0.501 0.491 0.496 0.877

AutoDaedalus method Multi label TOTAL 1.308 1.282 1.295 3.929

Table 31 Comparison of experimental results (tabulated)

76

Figure 44 Comparison of experimental results (graphed)

77

Chapter Ⅶ

7 DISCUSSION

In this chapter, we will interoperate and discuss the experimental results. As we have seen in the

previous chapter, we have split our testing into two experiments. First, we will discuss the first

experiment where we had a dataset with one (1) valid class and one (0) anomaly class. Results have

shown that both methods produced highly accurate anomaly detection in the MNIST dataset. This

is also true for all model depths in both methods. It is interesting to see that AutoDaedalus

generated NN models with a lot of different combinations of activation functions and output space

dimensions, but was nevertheless able to render NN models with results that were almost identical

to those rendered by the manual method. This is a good indication that not only the logically

accepted architecture designed by human NN architects can perform well. Upon further inspection

of the results of the first experiment we can say that the best NN models created by the manual

models were at a depth of 3 and 4. In comparison, AutoDaedalus generated the best NN model

with a depth of 3. To summarise, based on our measurements depth 3 is the peak value at which

the NN model detects anomalies the best. Moving to the second experiment, we can easily see that

the results were not as good as those of the first experiment. There are several reasons for this.

The greater complexity of the dataset, with valid values in classes (1,2,3,4,5,6,7,8,9) and anomalous

values in class 0, and the relativity simple type of layers (Dense) for such a task. If the precision

metric which measures the ability of a model to identify only the relevant data points, reached a

value of 1 (1 is the best) in the first experiment, then it had in the second experiment on average

one-quarter of the value. Also, when looking into recall metrics we can see that both NN models

from the manual and AutoDaedalus methods, had some difficulties identifying valid values as

anomalies due to the large reconstruction losses of the NN models. The reason for this is that when

the NN model was trained, it was unable to achieve better accuracy, mainly because of the

simplicity of the architecture required for this task. When looking only at the F1-score we might

78

think that the results are not of much use, but we need to consider that a big factor is the

acceptance of the value of the quantile that we chose for anomaly detection. The border between

normal and anomaly in a dataset can be a relative term. Since there is no clear definition of what a

true anomaly is in a specific dataset. An example in the MNIST dataset can be made of the numbers

1 and 7. To what extent will we claim that 1 does not look like 7, or vice versa? When considering

this we must understand that the model found a specific data instance which it was unable to

recreate with a small loss, and therefore it could still have been an anomaly even though its class

represented the valid label. On the other hand, specific anomalous data instances can have a small

reconstructed loss, and therefore would not be detected as an anomaly since it would not fall over

the selected quantile. Nevertheless, looking back over the results of this experiment we can

summarise that there was no particular outstanding NN model depth which was best among the

manually created NN models, but on the AutoDaedalus side a clear winner was the NN model with

a depth of 5. Not only was it the best in its class, but it was also the best in the whole second

experiment. Its anomaly detection success was more than half. From the output in log files, we

found that it identified 491 anomalies as true positives out of all 980 anomalies in the dataset. With

this finding, we can safely conclude that our AutoDaedalus method offers competitive performance

compared to our list of manually created NN models with a simple dataset and even better results

than the manual method when faced with a more complex dataset. We assume that a reason for

the better performing NN model could lie in its architecture since in a complex dataset a key to

better performance can be a combination of different activation functions and a mixed distribution

of output space dimensionality.

With all tests under the hood, we can conclude our hypothesis. When answering the first research

question RQ1, we can accept the H1 hypothesis, since the total sum of the F1-score and AUC for all

models grouped by method is 3.5% higher with the AutoDaedalus method than with the manual

method. When finding the answer to the second research question RQ2, we need to limit the scope

of the question. If we are looking for the best overall NN model, then the H2 hypothesis is true. But

if we are looking at all constructed NN models with both methods, the result of the H2 hypothesis

is negative. Therefore, we partly accept the H2 hypothesis. When it comes to acceptance of the H3

hypothesis, which answers the research question RQ3 we can strongly accept it, since swarm

algorithms, in our case ACO, proved themselves when building autoencoder architectures.

Hypothesis H3 is accepted. We end this discussion with the acceptance of the thesis as well since

our experiments proved that novel NN models can be designed by the AutoDaedalus method.

79

Chapter Ⅷ

8 CONCLUSION

At the beginning of our master’s thesis, we set five goals to help us answer the research questions

that interested us. Throughout the whole work, we have focused on providing the necessary theory

and development of tools in order to obtain solid outcomes, and to confirm the hypotheses based

on these research questions.

We have followed up the master’s thesis by reviewing the necessary theory. With this, we gained

additional knowledge on multiple topics. At the start, we briefly introduced machine learning

concepts, which are needed to understand neural networks. We wanted to understand how various

types of NN architectures are formed and how certain activation functions help during the DNN

training. All this knowledge was a great help in understanding what possibilities there are for the

construction of NNs. Since we wanted to build a model that would be capable of self-building NN

architectures, we needed to understand the main parts of the NAS technique. We learned that the

search space represents the edge boundaries, where the search strategy operates when it comes

to the construction of NN architectures. In practice, the search space can include concepts such as

layer types, how they are connected, and various parameters. Finally, we needed a performance

estimation technique, which in our case would need to be based on a swarm intelligence system.

Once we gathered the knowledge of NN construction, we moved on to understanding what

anomalies are and how best to detect them. Before detecting anomalies we needed to understand

different types, such as the point, contextual and collective anomaly. In addition, we wanted to

understand what data noise is and how it differs from an anomaly. Until now, we have looked at

the entire setup of the NAS method and its objective in our work. We next started to research how

we may provide a solution to the aforementioned anomaly detection. We proposed a special type

of NN autoencoder as a solution whose natural architecture is tailored to our needs. We explored

autoencoder properties such as encoder, latent space, decoder, model depth, autoencoder types,

80

and applications in which it may be utilised. The final part of our research was to find out how we

can automatically construct multiple autoencoder models and evolve them by use of the ACO

algorithm. As we learned from the ACO algorithm, if one of the ants is not able to construct a NN

model with good performance, others follow stigmergically and continue the exploration until the

best NN model is constructed. With all of the theory in place, the practical phase could begin. We

completed the goals of our master's thesis by building the open-source AutoDaedalus programme

which is capable of constructing new autoencoder topologies using the ACO algorithm based on

the search space limitations specified in the configuration file. We may use it to identify the best

performing NN models for anomaly detection. During the implementation, we explained the

workflow of AutoDaedalus with several examples and infographics. In the experimental chapter,

we have reported two experiments and compared the manual and AutoDaedalus methods on the

MNIST dataset to detect as many anomalies as possible. The purpose of the experiments was to

obtain answers to our research questions and hypotheses. When we compared the two methods,

we discovered that there is no significant difference between them for a simple dataset. Differences

became noticeable when we began the second experiment, which used a considerably more

complicated dataset. In this experiment, our proposed method proved its effectiveness by

constructing a better performing NN model. At the end of our master’s thesis, we can conclude that

the NAS technique using swarm intelligence as a search strategy can construct novel autoencoder

architectures that can be deployed for anomaly detection.

81

9 CITATIONS AND BIBLIOGRAPHY

 [1] “Machine Learning textbook.” https://www.cs.cmu.edu/~tom/mlbook.html (accessed Jul. 24,
2021).

[2] “What is Machine Learning?,” Jul. 01, 2021. https://www.ibm.com/cloud/learn/machine-
learning (accessed Jul. 24, 2021).

[3] “What Is Machine Learning? - I School Online,” UCB-UMT, Jun. 26, 2020.
https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/ (accessed Jul. 24, 2021).

[4] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: a tutorial,” Computer, vol.
29, no. 3, pp. 31–44, Mar. 1996, doi: 10.1109/2.485891.

[5] S. Arora, “Supervised vs Unsupervised vs Reinforcement,” AITUDE, Jan. 29, 2020.
https://www.aitude.com/supervised-vs-unsupervised-vs-reinforcement/ (accessed Jul. 04,
2021).

[6] T. Dietterich, “Overfitting and undercomputing in machine learning,” ACM Comput. Surv., vol.
27, no. 3, pp. 326–327, Sep. 1995, doi: 10.1145/212094.212114.

[7] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image
classification problem,” in 2018 International Interdisciplinary PhD Workshop (IIPhDW), May
2018, pp. 117–122. doi: 10.1109/IIPHDW.2018.8388338.

[8] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,”
J. Big Data, vol. 6, no. 1, p. 60, Jul. 2019, doi: 10.1186/s40537-019-0197-0.

[9] “What is Deep Learning?,” Jun. 30, 2021. https://www.ibm.com/cloud/learn/deep-learning
(accessed Jul. 24, 2021).

[10] J. Dean, “Large-Scale Deep Learning for Intelligent Computer Systems,” p. 69.
[11] E. Brynjolfsson and A. Mcafee, “ARTIFICIAL INTELLIGENCE, FOR REAL,” Artif. Intell., p. 31.
[12] P. H. Sydenham and R. Thorn, Eds., Handbook of measuring system design. Chichester, England:

Wiley, 2005.
[13] “Deep Learning.” https://www.deeplearningbook.org/ (accessed Jul. 03, 2021).
[14] J. Brownlee, “How to Choose an Activation Function for Deep Learning,” Machine Learning

Mastery, Jan. 17, 2021. https://machinelearningmastery.com/choose-an-activation-function-
for-deep-learning/ (accessed Jul. 03, 2021).

[15] G. Kyriakides and K. Margaritis, “NORD: A python framework for Neural Architecture Search,”
Softw. Impacts, vol. 6, p. 100042, Nov. 2020, doi: 10.1016/j.simpa.2020.100042.

[16] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A Survey,” ArXiv180805377
Cs Stat, Apr. 2019, Accessed: Feb. 28, 2021. [Online]. Available:
http://arxiv.org/abs/1808.05377

[17] D. Zhou et al., “AutoSpace: Neural Architecture Search with Less Human Interference,”
ArXiv210311833 Cs, Mar. 2021, Accessed: Jun. 13, 2021. [Online]. Available:
http://arxiv.org/abs/2103.11833

[18] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput. Surv.,
vol. 41, no. 3, p. 15:1-15:58, Jul. 2009, doi: 10.1145/1541880.1541882.

[19] M. Ahmed, A. N. Mahmood, and Md. R. Islam, “A survey of anomaly detection techniques in
financial domain,” Future Gener. Comput. Syst., vol. 55, pp. 278–288, Feb. 2016, doi:
10.1016/j.future.2015.01.001.

[20] “How Airbus Detects Anomalies in ISS Telemetry Data Using TFX.”
https://blog.tensorflow.org/2020/04/how-airbus-detects-anomalies-iss-telemetry-data-
tfx.html (accessed May 28, 2021).

[21] E. Aleskerov, B. Freisleben, and B. Rao, “CARDWATCH: a neural network based database mining
system for credit card fraud detection,” in Proceedings of the IEEE/IAFE 1997 Computational

82

Intelligence for Financial Engineering (CIFEr), Mar. 1997, pp. 220–226. doi:
10.1109/CIFER.1997.618940.

[22] T. Matek, “Anomaly detection in computer networks using higher-order dependencies,”
masters, Univerza v Ljubljani, 2017. Accessed: May 28, 2021. [Online]. Available:
http://eprints.fri.uni-lj.si/3992/

[23] C. C. Aggarwal, Outlier Analysis. Cham: Springer International Publishing, 2017. doi:
10.1007/978-3-319-47578-3.

[24] M. Goldstein and S. Uchida, “A Comparative Evaluation of Unsupervised Anomaly Detection
Algorithms for Multivariate Data,” PLOS ONE, vol. 11, no. 4, p. e0152173, Apr. 2016, doi:
10.1371/journal.pone.0152173.

[25] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A Geometric Framework for
Unsupervised Anomaly Detection,” in Applications of Data Mining in Computer Security, D.
Barbará and S. Jajodia, Eds. Boston, MA: Springer US, 2002, pp. 77–101. doi: 10.1007/978-1-
4615-0953-0_4.

[26] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” ArXiv200305991 Cs Stat, Apr. 2021,
Accessed: Jul. 08, 2021. [Online]. Available: http://arxiv.org/abs/2003.05991

[27] A. Radhakrishnan, K. Yang, M. Belkin, and C. Uhler, “Memorization in Overparameterized
Autoencoders,” ArXiv181010333 Cs Stat, Sep. 2019, Accessed: Jul. 11, 2021. [Online]. Available:
http://arxiv.org/abs/1810.10333

[28] “The Great Autoencoder Bake Off,” Don’t Repeat Yourself, Jan. 24, 2021.
/autoencoders/2021/01/24/Autoencoder_Bake_Off.html (accessed Apr. 14, 2021).

[29] E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur, and B. Lakshminarayanan, “Do Deep
Generative Models Know What They Don’t Know?,” ArXiv181009136 Cs Stat, Feb. 2019,
Accessed: Jul. 11, 2021. [Online]. Available: http://arxiv.org/abs/1810.09136

[30] S. De, A. Maity, V. Goel, S. Shitole, and A. Bhattacharya, “Predicting the popularity of instagram
posts for a lifestyle magazine using deep learning,” in 2017 2nd International Conference on
Communication Systems, Computing and IT Applications (CSCITA), Apr. 2017, pp. 174–177. doi:
10.1109/CSCITA.2017.8066548.

[31] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy Image Compression with Compressive
Autoencoders,” ArXiv170300395 Cs Stat, Mar. 2017, Accessed: Jul. 11, 2021. [Online].
Available: http://arxiv.org/abs/1703.00395

[32] L. Gondara, “Medical image denoising using convolutional denoising autoencoders,” 2016 IEEE
16th Int. Conf. Data Min. Workshop ICDMW, pp. 241–246, Dec. 2016, doi:
10.1109/ICDMW.2016.0041.

[33] T.-H. Song, V. Sanchez, H. EIDaly, and N. Rajpoot, “Hybrid deep autoencoder with Curvature
Gaussian for detection of various types of cells in bone marrow trephine biopsy images,” 2017
IEEE 14th Int. Symp. Biomed. Imaging ISBI 2017, 2017, doi: 10.1109/ISBI.2017.7950694.

[34] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing neural networks through
neuroevolution,” Nat. Mach. Intell., vol. 1, no. 1, pp. 24–35, Jan. 2019, doi: 10.1038/s42256-
018-0006-z.

[35] J. Lehman and R. Miikkulainen, “Neuroevolution,” Scholarpedia, vol. 8, no. 6, p. 30977, Jun.
2013, doi: 10.4249/scholarpedia.30977.

[36] “Encyclopedia of Evolutionary Biology | ScienceDirect.”
https://www.sciencedirect.com/referencework/9780128004265/encyclopedia-of-
evolutionary-biology (accessed Jul. 15, 2021).

[37] S. Sen, “Chapter 4 - A Survey of Intrusion Detection Systems Using Evolutionary Computation,”
in Bio-Inspired Computation in Telecommunications, X.-S. Yang, S. F. Chien, and T. O. Ting, Eds.
Boston: Morgan Kaufmann, 2015, pp. 73–94. doi: 10.1016/B978-0-12-801538-4.00004-5.

[38] D. Shrivastava, S. Sanyal, A. K. Maji, and D. Kandar, “Chapter 17 - Bone cancer detection using
machine learning techniques,” in Smart Healthcare for Disease Diagnosis and Prevention, S.

83

Paul and D. Bhatia, Eds. Academic Press, 2020, pp. 175–183. doi: 10.1016/B978-0-12-817913-
0.00017-1.

[39] G. Vrbančič, I. Fister, and V. Podgorelec, “Swarm Intelligence Approaches for Parameter Setting
of Deep Learning Neural Network: Case Study on Phishing Websites Classification,” in
Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics,
New York, NY, USA, Jun. 2018, pp. 1–8. doi: 10.1145/3227609.3227655.

[40] “comparison - What is the difference between artificial intelligence and swarm intelligence?,”
Artificial Intelligence Stack Exchange. https://ai.stackexchange.com/questions/21142/what-is-
the-difference-between-artificial-intelligence-and-swarm-intelligence (accessed Jul. 16, 2021).

[41] L. Brezočnik, I. Fister, and V. Podgorelec, “Swarm Intelligence Algorithms for Feature Selection:
A Review,” Appl. Sci., vol. 8, no. 9, Art. no. 9, Sep. 2018, doi: 10.3390/app8091521.

[42] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Comput. Intell. Mag.,
vol. 1, no. 4, pp. 28–39, Nov. 2006, doi: 10.1109/MCI.2006.329691.

[43] M. Thuma, “OPTIMIZACIJA S KOLONIJAMI MRAVELJ,” 2013.
https://dk.um.si/IzpisGradiva.php?id=42762 (accessed Jul. 16, 2021).

[44] J.-L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels, “The self-organizing exploratory pattern
of the argentine ant,” J. Insect Behav., vol. 3, no. 2, pp. 159–168, Mar. 1990, doi:
10.1007/BF01417909.

[45] C. Blum, “Ant colony optimization: Introduction and recent trends,” Phys. Life Rev., vol. 2, no.
4, pp. 353–373, Dec. 2005, doi: 10.1016/j.plrev.2005.10.001.

[46] J. Hajewski, S. Oliveira, and X. Xing, “Distributed Evolution of Deep Autoencoders,”
ArXiv200407607 Cs, Apr. 2020, Accessed: Jul. 24, 2021. [Online]. Available:
http://arxiv.org/abs/2004.07607

[47] S. Lander and Y. Shang, “EvoAE – A New Evolutionary Method for Training Autoencoders for
Deep Learning Networks,” in 2015 IEEE 39th Annual Computer Software and Applications
Conference, Jul. 2015, vol. 2, pp. 790–795. doi: 10.1109/COMPSAC.2015.63.

[48] J. Hajewski and S. Oliveira, “An Evolutionary Approach to Variational Autoencoders,” in 2020
10th Annual Computing and Communication Workshop and Conference (CCWC), Jan. 2020, pp.
0071–0077. doi: 10.1109/CCWC47524.2020.9031239.

[49] F. Charte, A. J. Rivera, F. Martínez, and M. J. del Jesus, “EvoAAA: An evolutionary methodology
for automated neural autoencoder architecture search,” Integr. Comput.-Aided Eng., vol. 27,
no. 3, pp. 211–231, Jan. 2020, doi: 10.3233/ICA-200619.

[50] E. Byla and W. Pang, “DeepSwarm: Optimising Convolutional Neural Networks using Swarm
Intelligence,” ArXiv190507350 Cs Stat, May 2019, Accessed: Mar. 12, 2021. [Online]. Available:
http://arxiv.org/abs/1905.07350

[51] “CUDA,” Wikipedia. Jul. 03, 2021. Accessed: Aug. 23, 2021. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=CUDA&oldid=1031775035

[52] “Lambda Stack: an AI software stack that’s always up-to-date.”
https://lambdalabs.com/lambda-stack-deep-learning-software (accessed Aug. 23, 2021).

