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Povzetek 

Umetna inteligenca (angl. Artificial intelligence) postaja vse bolj dovršena in se vedno bolj uporablja 

v storitvah, ki jih uporabljamo vsak dan. Aplikacije, ki so se bile še pred desetletji skoraj neizvedljive, 

predvsem zaradi izgradnje njihove logike (samovozeča vozila, predlagane vsebine, sinteza govora 

…), postajajo danes izvedljive z algoritmi, ki so zmožni sami zgraditi model odločanja za podano 

težavo. Umetna inteligenca bo v prihodnosti poglavitno orodje, ki ga bomo uporabljali za reševanje 

vse bolj zahtevnih vsakodnevnih težav.  

Pomembno vlogo pri reševanju teh težav ima strojno učenje (angl. Machine learning), ki z globokim 

učenjem (angl. Deep learning) gradi globoke nevronske mreže (angl. Deep neural networks). 

Tovrstne mreže temeljijo na posnemanju poenostavljenega delovanja bioloških možganov in so zelo 

učinkovite za reševanje določenih težav, kajti same prilagajajo parametre nevronov ob učenju. 

Vendar pa je uspešnost učenja odvisna predvsem od tega, kako arhitekt zasnuje arhitekturo 

globoke nevronske mreže in kako so nastavljeni parametri mreže. S temi nastavitvami omejimo 

gradnjo nevronske mreže na izkušnje arhitekta, namesto da bi algoritem sam ugotovil, kakšne 

nastavitve so najbolj primerne za podano težavo. Znanost je za reševanje te težave začela aplicirati 

algoritme po vzoru iz narave (angl. Nature inspired algorithms) za izgradnjo nevronskih mrež z 

nevroevolucijo (angl. Neuroevolution). Proces nevroevolucije išče in optimizira ustrezno 

arhitekturo nevronskih mrež za reševanje specifične težave. Eden od algoritmov po vzoru iz narave 

so algoritmi inteligence rojev, ki s posnemanjem vedenja delcev (npr. mravelj) v naravi iščejo 

najboljšo možno rešitev za podano težavo. Pri nevroevoluciji je rešitev arhitektura modela 

nevronske mreže. Takšen proces je inovativen predvsem za težave pri izgradnji arhitekture 

nevronskih mrež, pri katerih poznamo le vhodne podatke (začetek) in končno stanje (cilj), ne pa 

procesa, ki ga moramo izvesti na naši poti. Takšen način imenujemo nenadzorovano učenje (angl. 

Unsupervised learning). Konkretni predstavnik takšnega nevronskega modela je avtomatski 

kodirnik (angl. Autoencoder), ki sprejme vhodne podatke, izvede proces in vrne izhodne podatke, 

cilj tega modela je, da so si vhodni in izhodni podatki čim bolj podobni, kajti zanimajo nas le koraki 
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procesa. S tem lahko opazujemo, kako se je model naučil predelati podatke, da so si čim bolj 

podobni kljub izvajanju operacij nad njimi. Če pride do prevelikega odstopanja, pa lahko to 

ovrednotimo kot anomalijo (angl. Anomaly detection). S tem procesom učenja iskanja arhitektur 

nevronskih mrež lahko ustvarimo računalniške sisteme, ki delujejo tako kot živa bitja. Primer: »Kako 

živo bitje opredeli spremembe v okolju kot razlog za strah ali užitek?«. 

V magistrskem delu se bomo osredotočili na spoznavanje in implementacijo sistema za avtomatsko 

gradnjo arhitektur nevronskih mrež. Naš program nosi ime AutoDaedalus. Ta program temelji na 

uporabi inteligence rojev, s katero definiramo algoritem za odločitev komponent v nevronski mreži. 

Te komponente so lahko vse od tipa nevronov, strukture nivojev, aktivacijskih funkcij do dimenzije 

izhoda nevronov. Tip arhitekture nevronske mreže, ki jo v našem primeru gradi AutoDaedalus, je 

avtokoder. Ta arhitektura je prepoznana po tem, da se vhodni podatki zakodirajo v latentni prostor, 

nato pa dekodira nazaj v izhodne podatke. AutoDaedalus v svojem iskanju najuspešnejše 

arhitekture nevronskega modela uporablja matriko, kot je razlika med vhodom in izhodom. Na 

koncu imamo cilj, da dobimo najboljši nevronski model za rekonstrukcijo vhodnih podatkov. S tem 

ko se je nevronski model naučil ustrezno zakodirati in dekodirati dan tip podatkov, ga lahko 

uporabimo za iskanje anomalij. Razlog za to je verjetnost, da nevronski model ne bo znal ustrezno 

zakodirati in dekodirati tipa podatkov, za katerega ni bil naučen. V našem primeru smo nevronske 

modele učili na podatkih MNIST, v katerem lahko najdemo slike ročno napisanih številk od 0 do 9. 

Če smo nevronski model učili na 99 % slikah enic (1) in 1 % slik ničel (0), smo želeli, da se model 

nauči označiti enke (1) kot normalne in ničle (0) kot anomalije v podatkih.  

Magistrsko delo je razdeljeno na 8 poglavij. Začne se s poglavjem, kjer se osredotočimo na 

spoznavanje umetnih nevronskih mrež, pri čemer se podrobneje spoznamo s strojnim učenjem in 

evolucijsko gradnjo nevronskih mrež. V tem poglavju želimo pridobiti potrebno znanje za učenje 

tovrstnih mrež na podatkih. Ob tem spoznamo različne tehnike učenja in kakšni so potrebni procesi, 

ko se model nevronske mreže uči na učni množici. Ker so nevronske mreže tesno povezane z 

globokim učenjem, spoznamo tudi to tehniko. Poglavje nadaljujemo s podrobnejšim pregledom 

nevronskih mrež in nevronov, ki jih sestavljajo. Ogledamo si, iz katerih komponent je sestavljen 

nevron in kako potujejo podatki skozi njega. Pri tem spoznamo, da nevronsko mrežo sestavljajo 

posamezni nivoji (vhodni, skriti, izhodni), ki so skupek nevronov. Vsak nevron se vede kakor 

električno stikalo, ki se vključuje ali izklaplja, kadar podatki potujejo skozi nevronsko mrežo. To 

vedenje je določeno kot rezultat aktivacijske funkcije, s katero lahko nadzorujemo celotno vedenje 

nevronske mreže. Ker pa je ta tok podatkov pomemben za učenje nevronske mreže, spoznamo prav 
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tako različne arhitekture nevronske mreže. Te arhitekture se razlikujejo po svoji strukturi in po toku 

podatkov skozi nevrone. Ker nas v magistrski nalogi zanima predvsem gradnja nevronskih mrež, si 

v naslednjem podpoglavju ogledamo, kako poteka evolucijski proces gradnje. Vse se začne z 

iskalnim prostorom, ki definira vse možne generirane arhitekture za izgradnjo in optimizacijo 

nevronskega modela. Pregledamo razliko, kako poteka iskanje arhitekture med človekom 

(znanstvenikom) in avtomatskim sistemom (angl: neural architecture search (NAS). Nadaljujemo 

strategijo iskanja, s katero se ustvarjajo kandidati za arhitekturo nevronskega modela. V naši nalogi 

podrobneje spoznamo konkreten primer algoritma (angl: ant colony optimisation (ACO)), ki ga 

uporabimo za iskanje arhitektur. Kot tretjo komponento NAS-a spoznamo evolucijsko strategijo, s 

katero si pomagamo, ko želimo dobiti povratne informacije za optimizacijo iskalne strategije. Takrat 

moramo izmeriti, oceniti ali predvideti uspešnost vsakega otroka arhitekture.  

V tretjem poglavju preidemo k spoznavanju anomalij in načinov, kako jih lahko prepoznamo v 

podatkih. V nekaj predstavljenih primerih si ogledamo, kakšne tipe anomalij poznamo in kako se 

med seboj razlikujejo. Prav tako ugotovimo, da se detekcija anomalij razlikuje od tipa strojnega 

učenja, kjer je odvisno, kakšni so podatki za učenje nevronskega modela. Podatki lahko vsebujejo 

jasno označeno mejo med normalnimi primerki in anomalijami ali pa je ta meja nepoznana. Na 

podlagi tega se odločimo, kateri tip strojnega učenja bo uporabljen, kajti od tega je odvisen izhod 

algoritma.  

V četrtem poglavju podamo primer praktične rešitve za odkrivanje anomalij s strojnim učenjem. 

Predstavimo poseben tip nevronske mreže, to je avtokoder. Kakor že predhodno omenjeno je 

glavna značilnost tega tipa nevronske mreže, da je sposoben originalne podatke zakodirati, nato pa 

jih dekodirati nazaj v originalno obliko. Kakovost nevronskega modela avtokoderja se pokaže ob 

primerjavi rekonstrukcije z originalom. Izbira avtokoderja tako sovpada s težavo zaznavanja 

anomalij. V našem delo se osredotočimo na odkrivanje anomalij, kjer ne poznamo meje med 

normalnimi podatki in anomalijami. Proces je relativno preprost, nevronski model avtokoderja 

naučimo na neki množici podatkov. Za to množico je potrebno, da je večina podatkov normalnih, 

nekaj pa anomalij. Ob tem procesu se bo model naučil zelo dobro obdelati normalne podatke, za 

anomalije pa se ne bo dobro izkazal. S takšno uporabo lahko model nevronske mreže učimo brez 

nadzora. V tem poglavju prav tako spoznamo, da je uspešnost obdelave podatkov odvisna od 

globine avtokoderja (števila nivojev) in tipa. Še vedno pa je treba arhitekturo avtokoderja ročno 

izdelati, zato si v naslednjem podpoglavju ogledamo, kako lahko to storimo s pomočjo inteligence 

rojev. V našem primeru z uporabo algoritma ACO. Algoritem uporablja mravlje kot reprezentacijo 
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nevronskega modela. Arhitektura, ki je zgrajena iz več nivojev, pa je reprezentacija poti, ki jo mravlja 

prehodi. Tako mravlje vedno začnejo na vhodnem nivoju, nato pa glede na odločitev algoritma 

vsaka izbere svoj naslednji tip nivoja z atributi (velikost, aktivacijska funkcija) in tako naprej, dokler 

ni dosežena X globina nevronskega modela. Enak proces se ponovi na strani koderja pa tudi 

dekoderja. Mravlja ob hoji skozi vozlišča za sabo spušča feromon. Več mravelj, ki se bo odločilo za 

dano pot, bo spustilo več feromona na tleh, posledično pa bo gostota večja, kar bo privabilo še več 

mravelj. Ta ideja izvira iz naravnega vedenja mravelj v koloniji. Kadar mravlje iščejo hrano, se izkaže, 

da je najbolje, da mravlje skupaj najdejo najkrajšo pot med gnezdom in hrano. V našem umetnem 

primeru se algoritem nadaljuje tako, da kadar vse mravlje opravijo svoje delo (generiranje 

arhitekture avtokoderja), se ta pretvori v ustrezen objekt v knjižnici Keras. Na tem objektu lahko 

nato izvedemo učenje in vrednotenje uspešnosti. Na podlagi rezultatov lahko določimo 

najuspešnejšo mravljo, kar v našem primeru predstavlja model avtokoderja, ki ustvari najmanjšo 

razliko med originalom in rekonstrukcijo vhoda.  

Nadaljujemo s petim poglavjem, kjer smo predstavili implementacijo programa AutoDaedalus. Na 

začetku smo začeli s predstavitvijo razloga za implementacijo avtomatskega iskanja nevronskih 

arhitektur v primerjavi z ročno izdelanim. Navedli smo omejitve pri izdelavi, ki so bile razdeljene na 

strojno opremo, ki smo jo uporabljali pri implementaciji in pri poznejšem testiranju, ter človeške 

vire. AutoDaedalus je prav tako omejen pri tipu arhitektur nevronskih mrež, ki jih lahko izdela. To 

je le avtokoder arhitektura. Naj omenimo, da je tip avtokoderja omejen na plitki in globoki model. 

S tem smo si določili začetne meje, v katerih bo deloval naš program. V naslednjem podpoglavju so 

omenjena orodja, okvirji in paketi programske opreme, ki je bila uporabljena. Ker je strojno učenje, 

ki poteka na grafičnih karticah, hitrejše, smo namestili ustrezno programsko opremo za učenje na 

grafičnih karticah. Ob nadaljevanju smo si podrobneje ogledali celotni tok programa AutoDaedalus, 

kjer smo ugotovili, da se vse začne z uporabnikom, ki s pomočjo konfiguracijske datoteke nastavi 

parametre za iskanje arhitektur. S tem omejimo iskanje arhitektur znotraj predvidenega območja. 

Nadaljujemo pripravo nabora podatkov, kjer je treba določiti, kateri primerki podatkov bodo 

normalni in kateri anomalije. Razmerje se lahko določi s parametrom v konfiguracijski datoteki. Na 

koncu postopka dobimo nabor podatkov razdeljen na učno in testno množico. Tok programa 

AutoDaedalus se nadaljuje z inicializacijo potrebnih objektov za knjižnici Tensorflow in Keras. Nato 

pa preidemo na glavni del programa, kjer smo uporabili odprtno kodno rešitev DeepSwarm, ki 

uporablja algoritem ACO. Kot že omenjeno smo ta del kode spremenili za naše potrebe. DeepSwarm 

je pristojen predvsem za vodenje iskanja nevronskih arhitektur, shranjevanja kreiranih modelov, 

prikazovanje infografike in zaganjanje ACO-algoritma na podlagi konfiguracijske datoteke. 
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DeepSwarm skrbi, da kadar je zgenerirana arhitektura modela, se dodajajo določeni nivoji. Ti so 

potrebni, da je možno na koncu model koderja in dekoderja združiti v en sam model avtokoderja. 

Tega uporabimo za učenje na učni množici. Skozi trening modela se nam izpisujeta natančnost in 

izguba. Ob koncu učenja pa se model ovrednoti z matrikami za izračun matrike zmede, F-mere in 

krivulje ROC-AUC. S pomočjo izpisanih metrik lahko ocenimo, kako se je končna arhitektura 

avtokoderja obnesla za prepoznavanje anomalij in kateri nevronski model je bil pri tem bil 

najuspešnejši. 

V šestem poglavju preidemo do eksperimentalnega dela, kjer smo želeli preizkusiti, kako se naša 

implementacija programa AutoDaedalus obnese v primerjavi z ročno zgrajeno arhitekturo 

avtokoderjev. Na eksperimentalni del smo se pripravili tako, da smo zasnovali dva različna 

eksperimenta. V prvem smo želeli preizkusiti obe metodi na podatkovni množici, kjer so enke (1) 

normalni podatki, ničle (0) pa anomalije. V drugem eksperimentu pa so bili normalni podatki med 

1 in 9 in le ničle (0) anomalije. Pri tem smo določili 0.9 kot kvantil dovoljene napake med originalnimi 

podatki in anomalijami. Obe metodi smo preizkušali med seboj do maksimalne globine 5. 

Generirani nevronski modeli so se razlikovali predvsem po številu nevronov v nivoju in aktivacijskih 

funkcijah glede na metodo. Med primerjavo metod na prvem eksperimentu smo ugotovili, da se 

uspešnost modelov ni kaj bistveno razlikovala in da sta obe metodi dosegali odlične rezultate glede 

na rezultate vseh matrik. Na koncu je bila ročna metoda za malenkost uspešnejša. V nasprotju z 

drugim eksperimentom so razlike postale hitreje vidne. Tukaj je šlo za bistveno težji eksperiment, 

kajti s tako preprosto arhitekturo nevronske mreže pri dani težavi se hitro pokaže, da se model ni 

sposoben naučiti tako kakovostno kot v prejšnjem eksperimentu razlikovati med normalnimi 

podatki in anomalijami. Zato sta imela odločilno vlogo izbira zaporedja nivojev in kombinacija 

aktivacijskih funkcij v nevronskih modelih. V tem eksperimentu je AutoDaedalus zgradil boljšo 

arhitekturo za prepoznavanje anomalij. To se je zelo poznalo na številu pravilno identificiranih 

anomalij, ki je bilo v najboljšem modelu več kot dvakrat večje kot v najboljšem modelu pri ročni 

metodi. Kadar pa primerjamo vse generirane nevronske modele po obeh metodah, pa so bili po 

matrikah F1-mera in AUC vrednosti modelov po naši metodi boljši za 3,5 %. 

V predzadnjem poglavju so diskusija, komentiranje eksperimentov in sprejemanje hipotez. Glavne 

iztočnice iz tega poglavja so predvsem, da lahko sistemi za avtomatsko kreiranje arhitektur 

nevronskih modelov izdelajo vsaj enako dobre modele, v nekaterih primerih pa celo boljše. Ti 

sistemi nam odpirajo vrata, ki nas velikokrat ovirajo, kadar pride do tega, da se boljša rešitev lahko 

skriva izven logičnih konceptov in sprejetih praks pri načrtovanju nevronskih arhitektur. To je 
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pomembno predvsem takrat, ko je vključeno nenadzorovano učenje, kajti težko je zasnovati 

uspešno arhitekturo, če je že razumevanje podatkov nejasno. 

V zadnjem poglavju sledijo komentiranje in zaključki vseh poglavij. Nekaj besed namenimo tudi 

vključevanju pridobljene teorije v našo implementacijo in poznejše testiranje skozi eksperiment. Na 

koncu želimo sporočiti bralcu, da so možnosti razvoja in uporabe sistemov NAS, osnovanih na 

inteligenci rojev, še velike. 
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Construction of deep neural networks using swarm intelligence to 

detect anomalies 

Keywords: neural architecture search, machine learning, swarm intelligence 

UDK: 004.85(043.2) 

Abstract 

The design of neural network architecture is becoming more difficult as the complexity of the 

problems we tackle using machine learning increases. Many variables influence the performance 

of a neural model, and those variables are often limited by the researcher's prior knowledge and 

experience. In our master's thesis, we will focus on becoming familiar with evolutionary neural 

network design, anomaly detection techniques, and a deeper knowledge of autoencoders and their 

potential for application in unsupervised learning. Our practical objective will be to build a neural 

architecture search based on swarm intelligence, and construct an autoencoder architecture for 

anomaly detection in the MNIST dataset. 
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ChapterⅠ 

1 INTRODUCTION 

Artificial intelligence (AI) is becoming more sophisticated and is deployed in services that we use 

every day. Applications that were unfeasible a decade ago, due to the complex nature of their logic 

(self-driving vehicles, personalised content, speech synthesis, etc.), are now becoming feasible with 

algorithms capable of building a decision model for a given problem. Artificial intelligence will be 

the primary tool we employ in the future to solve everyday challenges. 

Machine learning (ML) plays an important role in solving these problems by building deep neural 

networks (DNN) through deep learning (DL). Such networks mimic the function of biological brains 

and are extremely successful in solving specific problems because they modify neuronal parameters 

during learning on their own. However, the success of learning is mostly determined by the DNN 

architecture and the network parameters set by the architect. With these parameters, we limit the 

neural network (NN) design to the architect's experience rather than the algorithm selecting which 

settings are most appropriate for a given problem. To address this issue, computer scientists have 

begun to design biomimetic algorithms to generate NNs by neuroevolution. The neuroevolutionary 

method identifies and optimises the best NN design to solve a certain problem. Swarm intelligence 

(SI) algorithms, for example, seek the best possible solution to a given problem by simulating the 

behaviour of natural organisms (e.g., ants). 

The solution rendered by neuroevolution represents the architecture of the NN model. Such a 

method is novel, particularly for challenges in the construction of NNs, for which we only know the 

input data (start) and the final state (target), but not the cognitive procedural steps that must be 

accomplished in between. This is known as unsupervised learning. An autoencoder is a concrete 

example of a NN model that receives input data, performs a process, and returns output data. 

Because we are only interested in the cognition, the goal of this model is to make the input and 

output data as similar as possible. We can indirectly observe that the model has learned to process 
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the data correctly, if the input and output data are similar despite the operations performed on 

them. However, if there is a lot of variation we classify it as anomalous (Anomaly detection). 

With such a method for the discovery of novel NN designs, we can build computer systems which 

we cannot understand the operation of but know how they should behave. E.g. "How does a living 

system define changes in the environment as a source of fear or pleasure?" 

Goals: 

1. Implement a neural architecture search (NAS) for anomaly detection. 

2. Use a swarm intelligence algorithm to optimise the search space when creating neural 

network (NN) models. 

3. Allow an unsupervised machine learning algorithm to make decisions that mark the 

threshold between normal and anomalous data instances.  

4. Compare automatically generated and manually created neural network models for 

anomaly detection. 

5. Open-source project to engage further research activity in this field. 

Research questions: 

RQ1: Are automatically generated NN models comparable to manually created ones in terms of 

anomaly detection? 

RQ2: What percentage of anomalies inserted into the dataset is enough for a NN model to learn 

from? 

RQ3: Can swarm intelligence algorithms be used to effectively search for autoencoder architecture?  

Hypotheses based on the research questions: 

H1: The total number of metrics is greater in automated models than in manual ones. 

H2: The 1% of anomalies in the dataset is enough during the learning phase to detect half of them 

in the 0.9 quantiles during testing. 

H3: The ant colony optimisation (ACO) algorithm can be used to construct useful autoencoder 

architectures. 
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The thesis is derived from the above research questions and hypotheses. 

The NAS technique with a swarm intelligence search strategy can design novel NN architectures for 

a single objective search, with little or no help from human experts. 

1.1 Chapter contents 

This Master’s thesis comprises 8 chapters. We will learn about ML in the second chapter, which 

continues with an overview of artificial neural networks, the parameters required for their 

operation, and how evolutionary neural networks are built. The third chapter presents the 

knowledge that is necessary for anomaly detection, such as the definition of various types of 

anomaly and how to detect each of them with the help of ML. The main objective of this work is 

presented in the fourth chapter, as a computational system that is capable of performing the 

evolutionary construction of new NN models to detect anomalies in a dataset. In this chapter, we 

also cover the NN type of autoencoder, with the objective of learning how they operate and how 

we can use them for anomaly detection. We learn about the ant colony optimisation method, which 

serves as our primary architecture for construction of the autoencoder. In the fifth chapter, we use 

the acquired knowledge to develop a programme that incorporates an ACO-based NAS for anomaly 

detection. This chapter includes the programme overflow and a detailed explanation of the 

components. The sixth chapter is based on experiments and compares manual construction of a 

NN with our implementation of AutoDaedalus. We answer our research questions and confirm our 

hypotheses on the basis of experimental data. The seventh chapter presents in-depth debates, and 

the eight chapter summarises the thesis. 
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Chapter Ⅱ 

2 BACKGROUND AND METHODS 

2.1 Machine learning 

Machine learning (ML) is a subset of artificial intelligence that focuses on teaching computers how 

to learn without the requirement for particular task programming. The key notion is that it is 

feasible to develop algorithms that can learn and predict from data by themselves [1]. ML is an 

expanding area of data science. Algorithms are taught to generate classifications or predictions 

using statistical approaches, allowing data mining projects to reveal important insights. 

This kind of mined knowledge is important for the growth metrics that businesses employ while 

moving products to the market [2]. According to UC Berkeley [3] ML is composed of three parts. 

 

▪ A decision process: Machine learning algorithms are used to produce predictions or 

classifications in general. The algorithm will provide an estimate of a pattern in the data 

based on some input data, which can be labelled or unlabelled. 

▪ An error function: An error function is used to assess the model's prediction. If there are 

known instances, an error function may be used to compare the model's accuracy. 

▪ A model optimisation process: Weights are adjusted to decrease the gap between the 

known example and the model’s estimate if the model can fit better to the data points in 

the training set. This assessed and optimised procedure will be repeated by the algorithm, 

which will update weights on its own until a certain level of accuracy is reached. 

2.1.1 Learning methods 

Supervised learning (SL) – Is the most common learning approach in neural networks (NNs). It is 

learning via the teacher-student relationship, where the teacher possesses the environmental 

knowledge. The representation of an environment is expressed with a set of input-output pairs 

(features and labels). This learning method is applied in the field of classification or value prediction 

(regression). A learning algorithm is taught with examples, which represent input and expected 



 

5 

 

output, e.g. a correctly classified value or output numerical value. Weights are adjusted according 

to the difference between an actual vs. predicted network result with a loss function[4]. 

 

Unsupervised learning (UL) – Is the exact opposite of supervised learning. It does not require any 

pre-labelled or completely labelled dataset. Unsupervised learning is self-organised learning. Its 

main goal is to investigate underlying patterns and make predictions about the outcome. We 

provide the computer data and instruct it to search for hidden features and logically cluster the 

data. This learning method is used for clustering, anomaly detection, association, autoencoders. It 

is difficult to assess the accuracy of an algorithm that has trained with unsupervised learning since 

the data lacks a recognised "ground truth" element. However, labelled data is difficult to come by 

in many study areas, or it is prohibitively expensive. In some circumstances, allowing the deep 

learning model to discover patterns on its own can yield excellent results [4]. 

 

Reinforcement learning (RL) – Does not rely on either supervised or unsupervised learning. RL 

algorithms learn to react to their surroundings on their own in any given context. This field of study 

is expanding quickly and creating a wide range of learning algorithms which can be used in robotics, 

gaming, and other fields. There is always a start and an end state for a learning agent. However, 

there may be multiple ways to reach the end state. An agent tries to manipulate the environment 

in a reinforcement learning problem to its benefit. On success, the agent is rewarded and 

appreciated, while If the agent is rewarded and appreciated for displaying good behaviour, then it 

should be penalised and disappreciated in equal measure upon failure to display good behaviour. 

The agent learns from its environment in this way [4]. 
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Differences are summed up in Table 1, as explained in the paper [5]. 

Criteria Supervised ML Unsupervised ML Reinforcement ML 

Learning Trained with labelled data 

and guidance. 

Self-training with 

unlabelled data without 

any guidance. 

Works on interacting with 

the environment 

Type of data Labelled Unlabelled No predefined data 

Type of problems Regression and 

classification 

Association and clustering Exploitation or 

exploration 

Algorithms Linear regression, 

Logistic regression, 

SVN, KNN, etc… 

K-Means, 

C-Means,  

Apriori 

Q-Learning 

SARSA 

Goal Calculate outcomes Discover underlying 

patterns 

Learn a series of actions 

Application Forecasts trading, 

Risk evaluation 

Recommendation 

systems, Anomaly 

detection 

Gaming, Self-driving 

vehicles 

Table 1 Types of machine learning 

2.1.2 Overfitting and underfitting 

A model that overfits the training data is referred to as overfitting. When a model learns the 

information and noise in the training data to the point where it degrades the model's performance 

on new data, this is known as overfitting. This means that the model picks up on noise or random 

fluctuations in the training data and learns them as concepts. The issue is that these concepts do 

not apply to new data, limiting the model's ability to generalise. Nonparametric and nonlinear 

models, which have more flexibility when learning a target function, are more prone to overfitting. 

As a result, many nonparametric machine learning algorithms feature parameters or strategies that 

limit and constrain the amount of detail learned by the model. The problem of overfitting can be 

solved in various ways, the most basic of which is adding more data to the dataset or reducing 

model complexity [6]. On the other hand, we have the underfitting problem. A model is defined as 

underfitting if it cannot model and generalise to new data. A machine learning model that is 

recognised as underfitting is unsuitable, as evidenced by its poor performance on the training data. 

Underfitting is rarely discussed since, given a decent performance metric, it is simple to discover. 
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The solution is to move on and experiment with different machine learning techniques. 

Nevertheless, underfitting serves as a good counterpoint to the issue of overfitting. 

Since overfitting is more difficult to overcome, multiple methods are used to reduce it. The obvious 

first step that can be taken is to add more data to the learning process, which in some cases will 

not be possible as we already possess all the available data. The next step is data augmentation, a 

solution to the previous problem when we do not have more data for training. It is a process that 

makes minor changes to data such as flips, rotations, scaling, or translation. That kind of data 

transformation will make neural networks believe they are facing new instances. In Figure 1, we 

can see a demonstration of data augmentation for convolutional neural networks (CNN) training 

models [7], [8]. 

 

Figure 1 Data augmentation on a single image 

When the previously mentioned steps do not provide a suitable solution, we need to add 

regularisation to our NN model. The four most popular options are dropout, L1 and L2 

regularisation, and cross-validation. The dropout technique prevents interdependent learning by 

changing the outputs of randomly selected neurons to 0 during each training cycle. L1 regularisation 

estimates the median of the data, while L2 regularisation estimates the mean of the data to avoid 

overfitting. The last technique is cross-validation. The idea is to construct many tiny train-test splits 

using the initial training data. These divisions can be used to fine-tune the model. Data is partitioned 

into k subsets, or folds, in typical k-fold cross-validation. The method is then iteratively trained on 

k-1 folds, with the remaining fold serving as the test set (holdout fold). With cross-validation, one 

may fine-tune hyperparameters using only the data from the original training set. This allows us to 

keep the test set as a truly unseen dataset for the selection of a final model. The selection of 

techniques is dependent on the dataset. 
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2.1.3 Deep learning 

Deep Learning (DL) is a subset of ML approaches that employs artificial neural networks (ANNs) 

that are inspired by the structure of neurons in organic brains. DL essentially consists of three or 

more layers in a neural network. The term “deep learning” originally referred to the presence of 

numerous layers in an artificial neural network, but its meaning has evolved over time. While 10 

layers were sufficient a few years ago to account for network depth, today it is usual for a network 

to be deep if it has hundreds of layers. The way each algorithm learns is where DL and ML differ. 

These algorithms can take text, pictures, voice recordings, and learn important characteristics of 

the data, which can significantly reduce the need for human expertise (especially in feature 

extraction) and allows the usage of larger datasets [9]. As Jeff Dean mentioned in his slides [10], 

with more data plus bigger models plus more computations, results get better. 

2.2 Neural networks 

We could describe neural networks as a set of algorithms whose architecture is inspired by the 

human brain for recognising patterns in data. They use a sort of machine perception to categorise 

or cluster raw data. All real-world data, whether images, sounds, text, or time series, must be 

translated into numerical vectors which form patterns that the NN can recognise, optimise and 

even predict. This allows researchers from many scientific disciplines to design artificial neural 

networks to solve a variety of problems. In paper [4], the author asks ‘Why artificial neural 

networks?’, which is answered by the fact that at the time of writing, von Neumann's modern 

computer did not offer characteristics comparable to a human brain. A few of the characteristics 

mentioned by the author are: 

▪ learning ability 

▪ generalisation ability 

▪ adaptivity 

▪ inherent contextual information processing 

▪ fault tolerance 

 

As we know, modern digital computers outperform humans when it comes to numerical 

computation. However, humans are still much better at solving perceptual problems, such as 

recognising the same human face in different spacetimes. For example, recognising a known person 

on a group photo taken during childhood and a present picture. Or recognising a potentially 

dangerous pattern of human driving behaviour based on previous experience. Not only are humans 

better at those tasks, they are also very flexible in solving common problems without much effort. 



 

9 

 

Nevertheless, as more resources come into the field of artificial intelligence, applications based on 

neural networks will become better [11]. 

2.2.1 Artificial neural networks 

Artificial neural networks (ANNs) are comprised of node layers containing an input layer, one or 

more hidden layers, and an output layer, they are used to simulate human neural networks. Each 

node, or artificial neuron, is connected to all others and has a weight and threshold linked with it. 

The nodes represent a space where computation happens, with similar characteristics as human 

neurons, which need a specific threshold of stimulation to be activated (can be controlled with bias 

manipulation). This activation represents a passage of data in our ANN from a given layer to the 

next one in a network. Otherwise, no data is passed along to the next layer of the network. A node 

combines data input with a set of coefficients and weights amplifying or dampening that input. It is 

important to choose the right input data concerning the task which the algorithm is trying to learn. 

For example, if we want to classify the data with a minimum error, we need to find the right input 

data. To determine whether and to what extent a signal should progress further through the neural 

network, the input and weight products are summed and passed through an activation neuron. 

When a signal passes through different layers of neurons, which consequently activate other 

activations nodes, we can determine the outcome of a neural network. The relationship 

representing the neuron output signal is given by the following equation [12]: 

Ο = 𝑓(𝑛𝑒𝑡) = 𝑓 (∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1

) (1) 

Where 𝑤𝑗 represents the weighting vector. Function 𝑓(𝑛𝑒𝑡) is referred to as an activation function, 

where the 𝑛𝑒𝑡 variable is a scalar product of the input and weight vectors, 

𝑛𝑒𝑡 =  𝑤𝑇𝑥 =  𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛 (2) 

𝑇 is a transposition of a matrix. The final output value 𝑂 is computed as 

𝑂 = 𝑓(𝑛𝑒𝑡) = {
1, 𝑖𝑓 𝑤𝑇𝑥 ≥ 𝜃
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

where 𝜃 is the threshold level of a neuron. If the result is 1, data will flow through the network, if 

it is 0, then it is a dead end. 
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In Figure 2 we can see the components of a single node. A collection of nodes is called a node layer 

(Figure 3), representing a row of neurons in a neural network. Each of them turns on and off like an 

electrical switch as the input is fed through the network. Starting with an initial input layer that 

receives the user’s data, each layer's output is the subsequent layer's input. 

 

Figure 2 Neural network node components 

 

Figure 3 Artificial neural network scheme 

The concept of forward feeding is usually the case, even though recurrent neural networks that 

allow feedback connections also exist.  

2.2.2 Activation functions 

When we want to shape the neuron’s output, activation functions come to the rescue. They enable 

us to set the output boundary for a given task, consequently with this operation, we can determine 

the result of a neural network as well. An activation function defines how the weighted sum of an 

input in a node is transformed into an output in the neural network. Although networks are 

designed to use the same activation function for all nodes in a layer, the activation function is 
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applied within or after the internal processing of each node in the network. A neural network 

typically contains three sorts of layer. An input layer, which accepts initial data into the system for 

processing; a hidden layer that receives input from the previous layer, runs an algorithm, and then 

sends the calculated output to the next layer; and an output layer that makes a prediction. In this 

process, the hidden layers typically use the same activation function. The output layer on the other 

hand uses the activation function which fits the requirements for a prediction by the model. Various 

activation functions may be utilised in neural networks, however, only a few are utilised in practice 

for hidden and output layers. 

The following are the most often utilised activation functions for hidden layers: 

• Sigmoid activation function 

This is a mathematical function, the plot of which has a characteristic "S" shape. It is used in 

machine learning mainly because at a certain value of X it gradually maps the value of Y, which is 

very practical in classifying data that we know to have only two meanings. The output is limited to 

values between 0 and 1. The equation is expressed as follows: 

𝑓(𝑥) =  
1

1 + 𝑒−𝑥
(4) 

 

Figure 4 Sigmoid function graph 
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• ReLU activation function 

This consists of the function F (z) = max (0, z), which means that if the result is positive, it will print 

the same value, otherwise the output is 0. It is popular because it is easy to use and effective in 

getting around the limits of other popular activation functions like Sigmoid and Tanh. It is less prone 

to vanishing gradients, which prohibit deep models from being trained, yet it can suffer from other 

issues such as saturated or "dead" units. In Figure 5 below, we can see the graph of the function. 

The equation is expressed as follows: 

{
0   𝑖𝑓𝑥 ≤ 0
𝑥  𝑖𝑓 𝑥 > 0

 = max{0, 𝑥} = 𝑥1𝑥 > 0 (5) 

 

Figure 5 ReLU graph function 

• Tanh or hyperbolic tangent Activation Function 

This function accepts any real value as input and returns a value between -1 and 1. The larger the 

input (higher positive number), the closer the output is to 1.0, and the smaller the input (higher 

negative number), the closer the output is to -1.0. It is calculated as follows: 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (6) 

Where e is the base of the natural logarithm. 
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Figure 6 Tanh graph function 

We can see that the ‘S’ shape of the Tanh function is similar to that of the Sigmoid function in Figure 

6. When choosing an activation function, it often boils down to the architecture of the neural 

network used in a model. Common architectures in modern neural network models such as the 

multi-level perceptron and convolution neural networks will use the ReLU activation function or its 

extensions as (Leaky ReLU, GELU, ELU, …) [13]. Tanh or sigmoid activation functions, or perhaps 

both, are still extensively used in recurrent networks. The LSTM (long short-time memory), for 

example, frequently employs Sigmoid activation for recurrent connections and Tanh activation for 

output [14].  

Output layers are used for a direct output prediction of a neural network model. It is important to 

note that all feedforward neural networks have an output layer. Activation for those layers can be 

done by Linear, Logistic (Sigmoid), and Softmax functions since they represent a list of most 

commonly used ones.  
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• Linear output activation function 

This function is sometimes referred to as an identity function because it always returns the same 

value that was passed into it. This is due to the multiplication with 1.0, which does not make any 

change to the weighted sum of the input. Formula: 

𝑓(𝑥) = 𝑥 (7) 

 

Figure 7 Identity function graph on the real numbers 

• Softmax activation function 

The Softmax function transforms a vector of integers into a vector of probabilities, with the 

probability of each value proportional to the vector's relative scale. Softmax is applied as the 

activation function for multi-class classification issues involving more than two class labels. In 

comparison with a Sigmoid function which is used to represent a probability distribution over a 

binary variable, Softmax is used to represent the probability distribution over a discrete variable 

with n possible values. 

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐽
𝑗=1

 𝑓𝑜𝑟 𝑖 = 1, … , 𝐽 (8) 

Where e is a natural logarithm base and x is a vector of outputs. 
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2.2.3 Types of architectures 

• Feedforward networks 

The connections between neurons in this sort of NN do not form a cycle or loop. The information 

is simply flowing forward from the input to the subsequent levels. There may be several 

intermediary hidden layers depending on the network design. Despite being the oldest and most 

basic form of network design, the feedforward NN is still frequently employed in machine learning. 

Figure 8 shows the mentioned architecture with 6 neurons in the input layer, 3 neurons in a hidden 

layer, and a single neuron in the output layer [4].  

 

Figure 8 Example of a feedforward network with a single hidden layer 

• Recurrent networks 

The feedback neural network remembers the lessons learned from the past (previous iterations) 

state and applies it to the future (next iteration). Here we must remember that an ordinary DNN 

uses its learned state for the future, but this learned knowledge is forthcoming from the entire pre-

completed training. Meanwhile, an RNN works the same way, but in addition remembers the state 

that has been learned from the previous input while the output is being generated. An RNN may 

have a single or multiple inputs and outputs. The hidden state vector, which contains context, 
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determines output. This is based on prior inputs and their results. As a result, the same input may 

produce a different output depending on the previous inputs in the series. 

 

Figure 9 Example of feedback network with a hidden state that is meant to carry pertinent information from 

one input item in the series to others. 

2.3 Evolutionary construction of neural networks 

For conventional machine learning algorithms, the hyperparameter optimisation problem has been 

addressed with a variety of methods. For example, we can use techniques such as grid search, 

random search, Bayesian optimisation, meta-learning, and others. Those techniques try to find a 

set of optimal hyperparameters, which are used in an algorithm during the learning process. 

However, when it comes to a deep learning architecture, the problem becomes much more 

challenging to solve. Not only because more time and computational resources are required, but 

extensive knowledge and understanding of both NN and optimisation processes [15]. Deep learning 

engineers are expected to have a solid comprehension of what architecture will perform best in a 

specific scenario, and yet it is rarely the case. The various possible design architectures that can be 

created are endless. This is where neural architecture search (NAS) is used to automate NN 

architecture engineering. Its goal is to figure out a network topology that will give the best result 

on a given task. As presented in this article [16], NAS is a system with three primary components 

[16]. 
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2.3.1 Search space 

In principle, the search space determines which architectures can be designed and a set of rules on 

how layers can be connected and set up (e.g., convolutional, fully connected, pooling). Since 

engineers often set up this component to simplify the search, researchers [16] are concerned that 

it can bring human bias into a construction. Human intervention in a search can prevent finding 

novel NN architectures which are beyond human understanding. In Figure 10, it is shown how the 

cycle of human-based topology is crafted in comparison to NAS-based. According to another article 

[17], the main difference is human intervention in search space construction and trial-and-error 

spent resources. 

 

Figure 10 NAS search space 

2.3.2 Search strategy 

A network architecture candidate pool is generated using a NAS search algorithm. It strives to 

generate high-performance architecture candidates based on the child model performance 

parameters (e.g., high accuracy, low latency). Examples of those algorithms are based on Bayesian 

optimisation, Reinforcement Learning (RL), Genetic Algorithm (GA), Weight sharing, and One-shot 

[12]. 
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2.3.3 Evaluation strategy 

The goal of NAS is typicaly to discover an architecture that produces high prediction performance 

on data that has not been seen before. To get feedback for optimising the search algorithm, we 

need to measure, estimate, or anticipate the performance of each child model. Candidate 

evaluation can be quite costly, hence several innovative evaluation methods have been proposed 

to save time or calculation. When we evaluate a child model, we are generally interested in its 

accuracy on a validation set. Recent research has begun to look into other aspects of a model, such 

as model size and latency, because specific devices may have memory constraints or require quick 

response times. As presented in Figure 11, NAS can be visualised as a pipeline of components. Each 

of these components plays a vital role when building an effective NN model for a specific problem. 

 

Figure 11 The general framework of NAS. 
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Chapter Ⅲ 

3 ANOMALY DETECTION 

Anomaly detection is the ability to find patterns in data that are not in line with expected content. 

The main goal of this process is to define a norm, technique, barrier which will separate outliers 

from normal data. Those data points are often referred to as anomalies, outliers, or unnatural [18]. 

An anomaly threshold cannot be generally set due to the fact that it can be used in a variety of 

domains. For that reason, it has become widely studied in statistics and machine learning, where it 

is also known as outlier detection, deviation detection, novelty detection, and exception mining 

[19]. Over time, a variety of anomaly detection techniques have been implemented for particular 

uses, such as the monitoring of sensor data on the international space station [20], credit card fraud 

detection where the system mines a database [21], network traffic analyser for UDP flooding [22], 

while others are designed to be more generic. Anomaly detections can be done based on available 

data labels that denote whether an instance is normal or anomalous. Since anomalous behaviour 

is often dynamic in nature, three methods of anomaly detection are commonly used. The 

supervised anomaly detection technique in which classes for normal and anomalous data instances 

are given. A semi-supervised technique in which classes are only assigned to normal and not to 

anomalous data instances. An unsupervised technique in which normal and anomalous data 

instances are presented, but no class labels are assigned [18]. Anomaly detection has high 

importance because its behaviour is often critical to a running system, this is also why we see a 

wider implementation of it in industry. 

3.1 What is an anomaly? 

According to Chandola et al. [18], anomalies are patterns in data which do not display 

characteristics that are similar to normal data, their instances are significantly different from the 

remaining data. This behaviour can be observed in any dimension of data if we can define a normal 
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subset to begin with. In Figure 12, we can see two-dimensional datasets, where the majority of 

observations lie in the region 𝑁1 and 𝑁2 which represent normal data. Points that are far enough 

away from these regions represent anomalies such as 𝑜1, 𝑜2 and points in the region 𝑂3.  

 

Figure 12 A simple example of datasets and anomalies 

While anomalies and noise are related, they have distinct concepts. Some authors use the term 

“weak outliers” to describe an instance that is outside the interquartile range, but within minimum 

and maximum, and “strong outliers” to describe an instance that is beyond all borders [23]. Noise 

in data is usually random and originates for a variety of reasons. It may not be interesting unless it 

can rate the quality of the instrument generating the data. In Figure 13(a), a single point A seems 

to be very different from the rest of the data in aspects of features X and Y, therefore it is certainly 

an anomaly in our example. Meanwhile, the situation in Figure 13(b) is much more subjective, 

therefore it is much harder to state confidently if A is noise or an anomaly in the data. Point A in 

Figure 13(b) is relatively more likely to present a data point for noise since it seems its randomness 

shares similarities to other noise points. In addition, anomaly refers to an outlier type that is of 

interest to an analyst, where point A does not have any strong evidence to flag it as an anomaly 

[23]. 

 



 

21 

 

 

Figure 13 The difference between noise and anomalies 

Within the unsupervised situation anomaly detection where previous samples of anomalies do not 

seem to be available, the distinction is due to the fact of the semantic boundary between normal 

data and true anomalies. Noise is commonly presented as a weak outlier of normal data, which 

does not meet a robust criterion for a data point to be interesting or anomalous enough to an 

analyst. 

To further understand the difference between noise and anomalies, Figure 14 gives a good 

overview of different regions on a continuous spectrum from normal data to noise and to 

anomalies. The distinction between the regions of the spectrum is frequently not exactly defined 

and is made on an ad-hoc basis based on application-specific criteria. A noisy system is mostly the 

main factor why many data points do not have a clear separation between noise and anomaly. 

Regardless of that, the noise generated by a noisy system process will be deviant enough to have a 

lower outlier score compared to anomalies, which typically have a higher outlier score. After all, it 

comes to the interest of an analyst to regulate the separation of noise and anomalies [23]. 
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Figure 14 The spectrum from normal data to outliers 

3.2 Types of anomalies 

When performing anomaly detection, it is important to understand different types of anomalies, 

such as point, contextual or collective anomaly. 

3.2.1 Point anomaly 

When a particular data point in the dataset deviates from the normal pattern of behaviour, it can 

be termed a point anomaly. This is considered a simple type of anomaly, and is therefore the subject 

of many research and study communities. Taking a look at Figure 12, where points 𝑜1, 𝑜2 and subset 

𝑂3 lie outside the boundary of normal data, which marks them as point anomalies, these often 

represent an extreme deviation that happens randomly and has no particular meaning. An example 

in real life would be when a developer is committing a source code on average 4.5 times per day, 

but if it becomes 8 or more times on any random day, it is considered to be a point anomaly. 
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3.2.2 Contextual anomaly 

When a data instance is anomalous in a specific context and not otherwise, it is termed a contextual 

anomaly. Even when observing the same point through different contexts, we will not always 

receive an indication of anomalous behaviour. To detect it we need to combine contextual and 

behavioural attributes. 

1. Contextual attributes are used to determine the context (or neighbourhood) for a data 

instance. Time and space are most frequently used. For example, when a developer commits a 

source code during the final stages of release, they are very likely to make a greater number of 

commits per day, which is considered normal. On the other hand, making a lot of commits 

during non-busy days is considered unexpected, anomalous, and would therefore require a 

deeper analysis to be explained. We flag values based on different periods. 

2. Behavioural attributes define the noncontextual characteristics of an instance. In our example, 

the number of commits would be correlated with the development team of which our 

developer is a member. 

When observing values for behavioural attributes within a specific context, anomalous behaviour 

can be detected. A data instance may represent a contextual anomaly in one context, while in 

another situation, an identical data instance (in behavioural attributes) may be considered normal. 

When identifying contextual and behavioural attributes for a contextual anomaly, the previously 

mentioned property is a key [18]. An example of a contextual anomaly can be seen in Figure 15. 

 

Figure 15 Number of commits per month 
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3.2.3 Collective anomaly 

When a collection of related data instances behaves irregularly in relation to the overall dataset, it 

is referred to as a collective anomaly. It is possible that an individual data instance is not an anomaly 

in and of itself but is labelled as such because it is part of a collection. Some authors also refer to 

collective anomalies as contextual anomalies based on the idea that we can look at the whole 

collective pattern of the data stream with contextual incorporation [19]. In our example, we could 

try to find collective anomalies if we would look at the source code commits of the entire team 

each day, as seen in Figure 16. 

 

Figure 16 Number of commits per day 

3.3 Detection in machine learning 

Detection of anomalies when analysing deviations from normal behavioural patterns on different 

datasets is a non-trivial task. Based on available data labels which denote whether a data instance 

is normal or anomalous, we can conduct anomaly detection techniques with three different 

models. 

3.3.1 Supervised anomaly detection 

To train in supervised mode, a training dataset with labelled instances for both normal and 

anomalous classes is needed. Building a predictive model for normal vs. anomalous classes is a 

common strategy in these situations. Any data instance that has not been seen is compared to the 

model to identify which class it belongs to. In supervised anomaly detection, two fundamental 
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challenges arise. To begin, there are considerably fewer anomalous examples in the training data 

than there are normal cases. Ingredients for the performance of supervised anomaly detection are 

presented in Figure 17. 

 

Figure 17 Supervised anomaly detection 

Second, getting correct and representative labels, particularly for the anomaly class, can be difficult. 

In article [18], the author mentioned several strategies developed to inject false anomalies into a 

regular dataset to acquire a labelled training dataset. Apart from these two concerns, the problem 

of supervised anomaly detection is comparable to that of creating predictive models.  

3.3.2 Semi-supervised anomaly detection 

The basic assumption for the semi-supervised technique is that most of the data come from the 

same (unknown) distribution, which we refer to as the normal part of the data. A few observations, 

on the other hand, come from different distributions and are classified as anomalies. For example, 

a spacecraft’s fault detection or network attacks can produce anomalies that cannot be sampled 

but can represent an accident or attack on a system. As computer systems become more 

sophisticated, relying on the availability of labelled datasets will be increasingly difficult. Ingredients 

for the performance of semi-supervised anomaly detection are presented in Figure 18. 

 

Figure 18 Semi-supervised anomaly detection 



 

26 

 

3.3.3 Unsupervised anomaly detection 

This technique receives a large dataset with mostly normal elements, yet there are outliers buried 

inside the dataset. A distinction between a training and test dataset is not made. The concept is 

that an unsupervised anomaly detection system scores data only on the dataset's particular 

characteristics. Distances or densities are commonly used to determine what is normal and what is 

an outlier [24]. The ability to process a large amount of data is a major advantage of the 

unsupervised anomaly detection process. The unsupervised technique is the most flexible 

approach, which does not require any labels, which can semi-automate the manual inspection of 

data and help analysts to focus on the suspicious elements of data instead of determining the 

deviation boundary to separate normal from anomalous data [25]. Ingredients for the performance 

of unsupervised anomaly detection are presented in Figure 19. 

 

Figure 19 Unsupervised anomaly detection 

3.4 Output of anomaly detection 

How anomalies are reported is a key aspect of any anomaly detection technique. Anomaly 

detection systems typically provide one of the following two sorts of output [18]. Firstly, a label can 

be used to indicate whether an instance is anomalous or normal [24]. Secondly, a score or 

confidence value that indicates the extent of the anomaly can be more informative [24].  

The sort of output is conditional on the technique used for the anomaly detection algorithm.                               

Labels are often used for supervised anomaly detection since they are used together with 

classification algorithms, their value is often binary. Scores, on the other hand, are more common 

in semi-supervised and unsupervised anomaly detection algorithms. This is primarily due to 

practical concerns, as programmes frequently rank anomalies and only show the user the top 

abnormalities. Scores allow the analyst to determine thresholds in a specific domain, to select 

relevant anomalies.  
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Chapter Ⅳ 

4 SOLUTION 

Autoencoders are a type of NN which may be applied in unsupervised anomaly detection. We shall 

get to know them better in the following chapter. 

4.1 Autoencoders for anomaly detection 

An autoencoder is a specific type of NN in which the dimensions of input and output are the same, 

e.g., if we put an image of size 50x50 pixels into an autoencoder model, we will get an output with 

the same dimensions. We can say that an autoencoder is a replicator neural network since it 

replicates data from the input to the output in an unsupervised way. By sending the input through 

the NN, the autoencoder reconstructs each dimension of the input (Figure 20). It may appear trivial 

to use a neural network to replicate an input, however, the size of the input is reduced during the 

replication process, resulting in a smaller representation (latent space). In comparison to the input 

and output layers, the hidden layers of the NN have fewer units. As a result, the reduced 

representation of the input is stored in the hidden layers. This reduced representation of the input 

is used to generate the output [26].  
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4.1.1 Architecture of autoencoders 

An autoencoder is made up of three parts: 

▪ Encoder: Is a fully connected, feedforward neural network that compresses the input 

image into a latent space representation and encodes it as a compressed representation 

in a lower dimension. The deformed representation of the original input is the 

compressed data. 

▪ Latent space: The reduced representation of the input that is supplied to the decoder is 

stored in this section of the network. 

▪ Decoder: Like the encoder, the decoder is a feedforward network with a structure that 

mirrors the encoder. This network is in charge of reconstructing the input from the code 

to its original dimensions. 

The encoder and decoder are defined as transitions 𝜙 and 𝜓, such that: 

𝜙: Χ → Υ (encoder) 

ψ: Υ →  Χ (decoder) 

ϕ, ψ =  arg min
Φ,𝜓

‖𝜒 − (𝜓 ∘  𝜙)𝜒‖2  

 

 

Figure 20 The input image is encoded to a compressed representation and then decoded 

Compression and decompression functions have three main properties such as they are data-

specific, which means that they can only compress data efficiently if it is similar to the data that 

they have been trained on, e.g. an autoencoder trained on pictures of cars would do a rather poor 

job of compressing pictures of flowers. This is due to the fact that the features it learnt are car-

specific. Another property marks the autoencoder's functions as lossy, because their output 

degrades the original input, due to the fact during the learning phase, a model reduces the original 

input to a latent space, from which it later attempts to reconstruct the output. Since all original 

details of the data cannot be represented in the reduced dimensions of the latent space, a loss 

results during reconstruction. The distance function is used to compute the difference between the 
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input and reconstructed data to minimise the reconstruction loss. Weights are adjusted based on 

the result. We need to define a distance function between the information loss when building a 

compressed representation of the input data and the decompressed representation to reduce the 

reconstruction loss. The lower it is, the better the model is. Automatic learning from data examples 

is another property of the autoencoder's function. This can be very useful when considering that 

we just need appropriate training data with which to train a model which we want to perform well 

on a specific type of input without any new engineering. 

4.1.2 Depth of model 

Many autoencoders are trained with a single layer encoder and decoder, however, using deep 

(multiple hidden layers) encoders and decoders renders numerous benefits. 

▪ Depth can exponentially reduce the required quantity of training data [13]. 

▪ Deep autoencoders produce superior compression than shallow or linear autoencoders in 

tests (e.g. memorisation in convolutional autoencoders [27]). 

▪ Depth can exponentially reduce the computational cost [13]. 

4.1.3 Types of autoencoders 

To avoid autoencoders from learning the identity function and to improve their ability to collect 

essential information and learn richer representations, a variety of approaches are available. A few 

examples are: 

▪ Shallow Autoencoders 

▪ Deep Autoencoders 

▪ Stacked Autoencoders 

▪ Sparse Autoencoders 

▪ Denoising Autoencoders 

▪ Variational Autoencoders 

▪ Beta Variational Autoencoders  

▪ Vector-Quantised Variational Autoencoders 

Each of them has its unique use cases. A good article explaining the differences between them can 

be found here [28]. 
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4.1.4 Applications of autoencoders 

The autoencoder can be used to learn a representation for a variety of purposes. 

Many new autoencoder architectures can be created by merging or modifying existing models for 

a variety of applications. Some autoencoder applications are listed below. 

• Anomaly detection 

The idea behind using autoencoders for these tasks is that a trained autoencoder will learn the 

latent subspace of normal samples. Once trained it would have a low reconstruction error for 

normal data and a high reconstruction error for anomalies. However, recent research has revealed 

that certain autoencoding models are not capable of reliably detecting anomalies, even though 

they can be very good at recreating anomalous samples [29]. 

• Classification 

While autoencoders are trained in an unsupervised environment (without labels), they can also be 

utilised in a semi-supervised environment (with labels on part of the data) to improve classification 

results. The encoder is "plugged" into a classification network and used as a feature extractor in 

this situation. This is most commonly done in a semi-supervised learning environment, in which a 

big dataset is provided for a supervised learning task, but only a tiny fraction of it is labelled. The 

fundamental assumption is that samples with the same label should correspond to some latent 

presentation that the latent layer of autoencoders can approximate [26]. They share similar 

characteristics of patterns in data (similar to anomaly detection methods). To use this setup in 

practice, the autoencoder is first trained with the unsupervised technique. The next step is to set 

aside a decoder (or used in parallel) and use an encoder as the initial part of a classification model. 

The final result can be viewed in Figure 21. 
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Figure 21 Example of autoencoder usage in semi-supervised technique 

• Clustering 

Clustering is an unsupervised task in which the goal is to divide data into groups with samples that 

are similar to each other but different from samples in other groups. Since the majority of clustering 

techniques are dimensionality-sensitive and suffer from the curse of dimensionality, the authors of 

the following paper [26] pointed out an example in which the data was assumed to have some low-

dimensional latent representation, autoencoders can be used to calculate such representations for 

data with fewer characteristics. Similar to the classification approach, a model is built. Furthermore, 

each data point's latent representation (the encoder's output) is then saved and used as the input 

for any clustering method.  

• Popularity prediction 

A stacked autoencoder system recently showed promise in forecasting the popularity of social 

media posts, which can be useful for online advertising techniques. They used a stacked 

autoencoder followed by a multilayer perceptron network. Authors of research [30] used available 

metadata from the user's account and published posts. Even due to the complexity of such a NN 

model, they have shown that it can be utilised for commercial applications. One of the commercial 

applications would be predicting the popularity of the next sponsored articles, and therefore help 

with price-fixing for the post. 
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• Image processing 

Autoencoders have characteristics that are beneficial in image processing. We can use them for 

lossy image compression, where they become competitive with other compression algorithms [31], 

or in more demanding applications, such as medical imaging. Autoencoders have been utilised for 

image denoising [32] as well as super-resolution [33]. The key information for such applications is 

usually found in the latent space of the autoencoder. 

4.2 Evolutionary neural networks 

Deep learning, in which neural network weights are taught via stochastic gradient descent versions, 

has received a lot of attention in recent machine learning. With the rise of computational 

capabilities (including the increased speed of GPUs) and large datasets, a different approach arises 

from the area of neuroevolution, which uses evolutionary algorithms to optimise neural networks, 

and is inspired by the idea that real brains are the result of evolution. Learning neural network 

building blocks (for example, activation functions, hyperparameters, designs), and even the 

methods for learning themselves are all possible with neuroevolution, while most neural learning 

techniques simply focus on changing the strength of neural connections (i.e., their connection 

weights). As mentioned in paper [34] deep learning and deep reinforcement learning differ from 

neuroevolution in that, these maintain a population of solutions during a search, allowing for 

extreme exploration and huge parallelisation. Evolutionary NNs are powerful, especially 

in applications of reinforcement learning, evolutionary robots, and attempts to create artificial life 

in a digital world [35]. 

4.2.1 Evolutionary computation 

Evolutionary computation (EC) is a method of engineering and optimisation in which solutions are 

created through processes modelled after Darwinian evolution rather than being built from first 

principles. One of the main methodologies in what is known as "nature-inspired computing" is 

evolutionary computation. As described in the book [36], if we take a look at technical terms, 

evolutionary computation is an example of a heuristic search, or search by trial and error, where 

the (trials) in EC are potential solutions, and the (error) is the measurement of how distant a trial is 

from the desired outcome. When creating new trials, the error is used to help determine which trial 

will be used next. The general guideline is that the best way to further minimise error is to create 

new trials by modifying the prior trials with the lowest errors. 
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The first step in an EC algorithm is to create a population of individuals that represent possible 

solutions to the problem. The initial population could be generated at random or by feeding it into 

an algorithm. Individuals are assessed using a fitness function, with the outcome indicating how 

effectively they solve or come near to solving the task. Individuals are then subjected to operators 

inspired by natural evolution, such as crossover, mutation, selection, and reproduction. A new 

population is generated based on the fitness values of newly evolved individuals. Some individuals 

are culled to maintain the population size, as is the case in nature. This process continues until the 

criterion for termination is met. The most common criterion for stopping the algorithm is when it 

reaches the specified number of generations. As a result, the best individual with the greatest 

fitness value is chosen [36], [37].  

The general steps of EC are as follows: 

initialise population 
evaluate the fitness value of each individual 
while the optimal solution is not found and 
 the number of generations defined is not reached 
 select parents 
 apply genetic operators to the selected individuals 
 evaluate fitness values of new individuals 
 select individuals for the next generation 
end while 
return the best individual 

The problem to be solved usually determines in an obvious way what the search space is, and what 

the objective function is. The chapter Evolutionary Computation in book [36] gives us an example 

if one wants to discover the largest value of 𝑓(𝑥, 𝑦) = sin(𝑥2 + 2𝑥 − 3) cos(−2𝑦 +  𝑦2 + 1) on 

the intervals −1 ≤ 𝑥 ≤ 1 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 1, with intervals representing a search space and the 

objective function f(x,y) itself. 

 Suppose we translate this mathematical example to the field of EANN (evolutionary artificial neural 

networks) which map input to the desired output. In that case, we could say that the search space 

is a set of weights and topology of the network connections. Furthermore, the objective function 

represents how closely the candidate's map matches the desired map using the closeness of a test 

set of inputs such as a medium squared error. 
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4.2.2 Swarm intelligence 

Swarm intelligence (SI) is a type of computational intelligence technique used to solve complex 

problems such as optimisation, routing or decision-making. Scientists once again looked to nature 

for inspiration when developing complex techniques and algorithms for problem-solving. 

SI involves a collective study of how individuals in a population interact with one another at the 

local level. Agents follow simple rules, and there is no centralised control system in place to predict 

the behaviour of individual agents. The random iteration of a specific degree between the agents 

results in emergent “intelligent” behaviour that is unknown to individual agents. Algorithms based 

on these characteristics are members of the SI algorithm family. Many surveys in recent years have 

demonstrated how promising these algorithms are for solving issues in a variety of disciplines [38, 

p. 17], [39], [40]. Many swarm intelligence algorithms have been proposed as a result of the 

popularity of this research topic. Particle Swarm Optimisation (PSO), Artificial Bee Colony (ABC), 

and Ant Colony Optimisation (ACO) are a few examples. A comprehensive review of the majority of 

them was conducted in the following paper [41]. Let us take a closer look at ACO. 

4.2.3 Ant colony optimisation 

Ants are eusocial insects that live in colonies of up to hundreds of millions of workers. Due to the 

intricate activity that occurs in ant colonies, several studies have been undertaken to better 

understand the collective behaviour of ants. A French researcher named Grassé identified an 

indirect form of communication among ants. Individual communication, or stigmergy, as he called 

it [42] is pheromonal and only accessible locally. He noticed that the results of these reactions could 

operate as additional significant triggers for both the producing insect and the colony's other 

members. 

Following are the two primary characteristics of stigmergy that set it apart from other forms of 

communication [42]. 

• Stigmergy is an indirect, non-symbolic method of communication mediated by 

pheromone traces deposited in the environment: insects share information by affecting 

their environment. 

• Stigmergic information is local: it can only be retrieved by insects that visit the location 

where it was deposited (or its immediate neighbourhood). 

Individual-to-individual and individual-to-environment interactions appear to be more complex. 

These complex behaviours are the result of the collective behaviour of very undemanding 
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individuals [43]. In the context of collective behaviour, eusocial insects are essentially incentive and 

response agents. The individual performs simple basic measures involving chance based on the 

information perceived in the local environment. Despite their individual simplicity, colonies of 

eusocial insects comprise a highly structured social superorganism. Deneubourg thoroughly 

researched ant pheromone deposition and the resulting behaviour. From that research also the 

famous double bridge experiment was conducted [42], [44].  

• Example for better understanding of ACO 

Demonstration of pheromone usage in the ant colony, when searching for food. 

Let us look at an example from the following paper [45]. Consider the following scenario: there are 

two ways to return food back to colony. There is no pheromone on the ground at first. As a result, 

the likelihood of picking either of these two paths is equal, i.e. 50%. Consider two ants who pick 

two alternative paths to get the meal, each with a fifty-fifty chance of success. 

 

Figure 22 Two ants travel different paths 

These two pathways are separated by a significant distance. The ant that takes the shorter path 

will arrive at the food source first. 

 

Figure 23 The ant which takes the shortest path, reaches food first 
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It returns to the colony after locating food and carrying some food with it. As it returns, following 

its own pheromone trail along its original path, it leaves more pheromone on the ground. The ant 

that takes the shortest route to the colony will arrive first. 

 

Figure 24 On the way back to the nest, the path is marked again by pheromone  

The colony (superorganism) is exploring the phase space of food gathering possibilities. The 

deposited pheromone signal accumulates upon the shorter path more quickly than on the longer 

path, because more ants have travelled the shorter path in the same amount of time. At some 

point, a tipping point occurs and most of the following ants take the shorter (more densely 

pheromone-laden) path. 

 

Figure 25 The third ant will travel along the path with the greatest loading of pheromone 

When the ant that took the longer path returns to the colony, other ants had already taken the 

path with the greater pheromone load. When another ant attempts to reach the colony's target 

(food), it will discover that a shorter path has a greater loading of pheromone. As a result, it chooses 
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the path with the greatest load of pheromone, which is also the shortest path. Let us look at the 

options and pick the best one (in the picture below). 

 

Figure 26 After both paths are marked with pheromone, ants will more likely choose the shortest path 

After multiple repetitions of this process, the shorter path has a greater pheromone loading and 

an increased chance of being followed, and all ants will take the shorter path the next time. 

 

Figure 27 After multiple iterations, the most used path will have a greater pheromone loading 

4.2.3.1 ACO algorithm 

When a biological ant is converted into an artificial one, we may describe it as a basic computational 

agent the goal of which is to find the best solution to a given optimisation problem. When using the 

ant colony example, the optimisation problem must be transformed. Its artificial representation 

must be expressed on a weighted graph, by which agents can find the shortest path. Following are 

the steps of an algorithm as described in this paper [43].  

When applying the first step of the algorithm, the generateSolutions() method is used to build a 

solution to the problem. The colony of ants is used to visit the edges of the graph and seeks 

solutions. When a solution is found, the next stage for the pheromone update is executed. 
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The pheromoneUpdate() method alters the pheromone trails during the pheromone update stage. 

While ants discover better solutions, the pheromone values on these paths increase, while the 

pheromone traces on worse pathways reduce to avoid local convergence. In practice, altering 

pheromone loadings improves the chance of paths that have been identified as suitable options 

being reused. 

The last step is the daemonActions() method, which uses centralised measures that cannot be 

performed by a single ant. A daemonic mechanism is the activation of local optimisations or the 

selection of global information to determine if pheromone loadings need to be increased, and along 

which pathways. This phase is not necessary for all versions of the ACO algorithm.  

The basic ACO algorithm is shown in pseudocode (below) and consists of the three main steps 

described above, with a loop which is run until the condition is met. 

procedure ACO_MetaHeuristic is 

  while not terminated do 

    generateSolutions() 

    pheromoneUpdate() 

  daemonActions() 

  repeat 

end procedure 

4.3 Evolutionary autoencoders 

As mentioned in paper [46], autoencoders are a type of unsupervised deep learning approach that 

may be used for a variety of tasks, including information retrieval (e.g., image search), image 

denoising, machine translation, and feature selection. These applications are feasible because the 

autoencoder learns to condense key information about the environment. With the wider usage of 

autoencoders, a challenge arises. When the application's domain is changed, such as from image 

denoising to feature selection, it is frequently the case that it is difficult to determine which network 

design or network characteristics must be altered or changed for the new application usage. 

The time necessary to train the network plus the lack of insight as to how the various layer types 

and hyper-parameters will interact with each other makes designing a neural network challenging. 

A response to this issue has been addressed lately [47]–[49], with which computer scientists are 

trying to build an efficient NAS algorithm to find the optimum between search time (resources) for 
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NN architecture and reconstructed error of a generated NN. For example, one recently proposed 

evolutionary method is the evolutionary autoencoder (EvoAE) [47], the main objective of which is 

to speed up the training of autoencoders when constructing a DNN. EvoAE evolves a population of 

autoencoders by learning a characteristic of each model in the form of hidden nodes. The 

evaluation of autoencoders is measured by their reconstruction quality. Crossover and mutation 

are used to generate the new autoencoders, in which the chromosome represents a hidden node 

and associated weights and connections. With that technique, human intervention in the 

construction of NNs is reduced. The authors have condensed the entire algorithm into four steps 

which are executed in each generation: 

a. Selection of autoencoder pairs by reconstruction error and fitness value. 

b. Crossover to generate two new autoencoders; children inherit the characteristics of both 

parents such as hidden nodes and associated weights. 

c. Mutation operator which under a given mutation rate adds or deletes a node from an 

autoencoder. 

d. Usage of backpropagation to minimise reconstruction error for each child. 

With this kind of method, we can significantly improve the architecture search for our domain-

specific problem. As the authors have mentioned, there is much future work to be done in this field. 

We have used similar concepts when building a NAS algorithm in the following experimental 

chapter. 
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Chapter Ⅴ 

5 IMPLEMENTATION 

In this section, we will present the practical implementation of the NAS system by the code name 

AutoDaedalus1, which aims to discover the best performing autoencoder architecture, when 

identifying the anomalies in a dataset. We will start with an explanation of why such auto systems 

are becoming increasingly important when building a NN for a variety of problems in multiple 

domains. With our work, we want to predominantly move all the manual effort of setting the 

hyperparameters of a NN model, building a topology of a NN model from a human engineer to a 

NAS system, which is limited only by the configuration settings set by the human operator. We are 

one of the first to combine concepts such as the NAS system that builds models with ACO algorithm 

to identify anomalies with an autoencoder. Work was done as a fork of an existing open-source 

research project by the code name DeepSwarm [50], which we see as a great starting point when 

developing SI for NAS. Our implementation was limited by computational, and human resources. 

5.1 Limitations 

Our research project was limited by the following three factors: 

• Computational resources 

For development and training environment we used the Razer Blade 15 Advanced (Early 2021 

model - RZ09-036) with Intel i7-10875H CPU, Nvidia GeForce RTX 3080 8 GB 6144 CUDA cores GPU, 

and 32 GB RAM. 

  

 
1 https://github.com/SasoPavlic/AutoDaedalus 

https://github.com/SasoPavlic/AutoDaedalus
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• Human resources and time scope 

Work was done during the course of 5 months, starting from an open-source DeepSwarm project 

to a final working prototype and experiment, by a single student software developer under the 

supervision of a professor mentor.  

5.2 AutoDaedalus scope 

The AutoDaedalus project is limited by the type of NN it can build. This is mainly because we are 

focusing on building an unsupervised model which should be able to create a logical border 

between normal data instances and anomalies. For this task we have chosen an autoencoder NN. 

Although autoencoder structures can be formed in a variety of ways, we have focused on shallow 

and deep autoencoders with fully connected layers. Furthermore, AutoDaedalus generates NN 

models based on the configuration file specified by a human operator. Once the model architecture 

is generated it trains and is evaluated on the MNIST dataset with parameters defined in a 

configuration file.  

5.3 Tools and frameworks 

For software development, we have used the following: 

• DL frameworks 

When it came to choosing DL frameworks, we began with the low-level, such as Tensorflow, which 

is intended primarily for professional and expert use in creating neural models, where things are 

based on lower-level implementation, which in practice means that we must be familiar with all of 

the components when using it. We used Tensorflow exclusively as our backend, with the high-level 

DL framework Keras on top, to simplify the process of constructing the NN models that can be 

consumed by the AutoDaedalus project functions. The key advantage of using Keras is how simple 

it is to construct and train a model, and then evaluate it. 

Since we had at our disposal one of the best laptop GPUs available at the time, we needed to make 

sure our NN models could train and run on it. To make this possible we needed to install the Nvidia 

CUDA. The CUDA platform is a software layer that allows computing kernels to have direct access 

to the GPU's virtual instruction set and parallel computational components [51]. 
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• Programming language 

Python 3.8.X was used as a key tool for data processing, developing scripts, displaying plots, and 

deep learning. Together with the great set of packages and strong online community support, it is 

one of the preferred options in data science. 

• Packages 

Python packages used: Pyaml, Scikit-Learn, Matplotlib, Numpy, Tensorflow, Keras 

Ubuntu packages used: Lambda stack, which provides a one-line installation and management of 

popular Linux AI software [52]. 
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5.4 AutoDaedalus workflow 

Since AutoDaedalus attempts to simulate the entire workflow of a human engineer, when it comes 

to designing a NN model, the entire workflow of a programme is divided into multiple parts. Each 

of them takes over the settings which are passed as parameters from the configuration file. This 

kind of process allows the human operator to control all the puzzles from a single-entry point, such 

as settings for the dataset, DeepSwarm object, and NN layers types to be used. Figure 28 shows the 

flowchart of the main AutoDaedalus components. 

 

Figure 28 AutoDaedalus flowchart of main components 
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Following are explanations of the main components in the entire workflow of NAS, ACO, and usage 

of the autoencoder to detect anomalies. 

5.4.1 Configuration file setup 

It all starts with the configuration file which controls the workflow during run time. It aims to set 

the edge boundaries of NAS when generating architectures as well as defining the data instances 

that represent normal instances and anomalies. All these settings and others are grouped into three 

main sets.  

DataConfig: 
  valid_label: [1,7,8,9] # Values representing normal instances 
  anomaly_label: [0] # Values representing anomalous instances 
  contamination: 0.01 # Amount of anomalies in a dataset in % 
  test_size: 0.2 # Ratio between train and test dataset size 
  random_state: 42 # State of the random number generator 
 
DeepSwarm: # DeepSwarm object responsible for providing a user-facing 
interface 
  save_folder: 
  metrics: accuracy # Metrics to evaluate the models  
  max_depth: 10 # Maximum and a minimum depth of hidden layers  
  min_depth: 1 # on one side of the Autoencoder 
  reuse_patience: 1 # Number of times weight can be reused 
 
  aco: # Ant colony optimisation object 
    pheromone: 
      start: 0.1 # Starting pheromone value  
      decay: 0.1 # Local pheromone decay 
      evaporation: 0.1 # Global pheromone decay 
      verbose: 1 # Logging components 
    greediness: 0.50 # Greediness of ants 
    ant_count: 10 # Maximum amount of ants (models) 
    latent_dim: 16 # Dimension of compressed space in Autoencoder 
   
  anomaly: 
    quantile: 0.98 # Instance out of this quantile are anomalies 
 
  backend: 
    epochs: 75 # Number of epochs per ant (model) 
    batch_size: 32 # Number of batches in epoch per ant (model) 
    patience: 5 # Early stopping during the training 
    verbose: 1 # Logging components 
    optimiser: adam # Optimiser for training 
    loss: binary_crossentropy # Loss function for training 
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Nodes: # Layers types used when building the topology 
 
  InputNode: # First layer in encoder model 
    type: Input # Type of layer in Keras 
    attributes: 
      shape: [!!python/tuple [28, 28, 1]]# Shape of input 
    transitions: 
      DenseNode: 1.0 # Transition possibility for next layer 
 
  InputDecoderNode: # First layer in decoder model 
    type: Input 
    attributes: 
      shape: [ !!python/tuple [ 14 ] ] # Shape of output 
    transitions: 
      DenseNode: 1.0   
 
  FlattenNode: # Flatten layer before latent space in Autoencoder 
    type: Flatten 
    attributes: { } 
    transitions: 
      DenseNode: 1.0 
 
  ReShapeNode: # Layer used when decoding back from latent space 
    type: Reshape 
    attributes: 
      target_shape: [ !!python/tuple [ 7, 7, 1 ] ] 
    transitions: 
      DenseNode: 1.0 
 
  DenseNode: # Hidden layer in autoencoder 
    type: Dense 
    attributes: 
      output_size: [128, 64, 32, 16, 8, 4, 2] 
      activation: [ReLU, LeakyReLU,Tanh] 
    transitions: 
      DenseNode: 0.2 
      DenseNode2: 0.3 
      DenseNode3: 0.1 
      DenseNode4: 0.1 
      DenseNode5: 0.3 
 
  DenseNode2: # Hidden layer in autoencoder 
    type: Dense 
    attributes: 
      output_size: [128, 2] 
      activation: [ReLU, LeakyReLU,Tanh] 
    transitions: 
      DenseNode: 0.2 
      DenseNode2: 0.2 
      DenseNode3: 0.2 
      DenseNode4: 0.2 
      DenseNode5: 0.2 
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  DenseNode3: # Hidden layer in autoencoder 
    type: Dense 
    attributes: 
      output_size: [ 32, 16, 8, 4] 
      activation: [ReLU, LeakyReLU] 
    transitions: 
      DenseNode: 0.1 
      DenseNode2: 0.1 
      DenseNode3: 0.4 
      DenseNode4: 0.2 
      DenseNode5: 0.2 
 
  DenseNode4: # Hidden layer in autoencoder 
    type: Dense 
    attributes: 
      output_size: [128] 
      activation: [ReLU, LeakyReLU,Tanh] 
    transitions: 
      DenseNode: 0.4 
      DenseNode2: 0.1 
      DenseNode3: 0.1 
      DenseNode4: 0.1 
      DenseNode5: 0.3 
 
  DenseNode5: # Hidden layer in autoencoder 
    type: Dense 
    attributes: 
      output_size: [2] 
      activation: [ReLU, LeakyReLU,Tanh] 
    transitions: 
      DenseNode: 0.2 
      DenseNode2: 0.1 
      DenseNode3: 0.3 
      DenseNode4: 0.3 
      DenseNode5: 0.2 
 
  OutputNode: # Final output layer in decoder model 
    type: Output 
    attributes: 
      output_size: [1] 
      activation: [Sigmoid] 
    transitions: {} 
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5.4.2 Preparation of the dataset 

The dataset used in AutoDaedalus needs to be set up for unsupervised learning. The dataset needs 

to have both normal and anomalous data instances without any labels denoting the class of an 

instance. When it comes to selecting the right data instances, parameters from the configuration 

file are passed. The valid_label contains an array of labels that represent the normal ones, on 

the other hand, the anomaly_label represents an array of anomalous ones. Before choosing 

actual data instances, the contamination parameter is passed alongside as well. With it, we 

determinate the number of anomalous instances in the final trainable dataset. An example of a 

build dataset can be seen in Figure 29.  

 

Figure 29 Dataset ratio between normal and anomalous data instances 

Once we have both types of data instances in place, we shuffle the dataset and split it to train and 

test the dataset according to the test_size parameter as seen in Figure 30. 
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Figure 30 Split of training and testing dataset 

5.4.3 Backend initialisation 

Our development was done in the Keras framework, to run the application on our low-level 

Tensorflow framework which serves as a backend, we need to first initialise it. This is done by calling 

the superclass of Tensorflow Keras API. BaseBackend is an abstraction class, which ensures that 

all the needed properties are initialised together with methods for the DL process, such as 

generate_model, train_model, evaluate_model.  

5.4.4 DeepSwarm with ACO 

As mentioned before, DeepSwarm is an open-source research project conducted by Edvinas Byla 

and Wei Pang [50]. Their contribution to the field of NAS showed great achievements in comparison 

to previously published methods. Since their source code was designed to form colonies of ants to 

generate convolutional neural networks (CNN), we needed to redesign the majority of the source 

code, that is responsible for model topology formation. The reason for this is that the structure or 

sequence of the layers which form the CNN model are different from the ones of the autoencoder 

model. 

Our modified version of the ACO algorithm is as follows. To generate the ant’s path which 

represents connections between the NN model, we have implemented two methods. The first one 

is generate_encoder_path, which generates an internal graph that includes the input_node 

by default. By this, we ensure that whatsoever dataset is pushed into the model, the first layer will 

accept it accordingly. After that, a specified number of ants is generated. Whose starting point 
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begins in an input_node. As explained by the authors of DeepSwarm, the ant selects one of the 

available nodes in the next layer of the CNN using the ACS selection rule. In our autoencoder 

structure scenario, once the next layer is selected, the ant chooses the node's parameters based 

on the response of the selection rule. The selection rule is applied based on the possible transitions 

each node has and the amount of pheromone used in this process. Transitions represent the 

neighboured nodes to which ants can travel. Once an ant reaches the current maximum allowed 

depth, Flatten_node flattens the previous layer’s output to a 1D vector. After that, another 

Dense layer is added to compress the 1D vector to the desired latent space. At this stage, the Keras 

model representation from the current graph would look like Figure 31. 

 

Figure 31 Structure of layers in an encoder 

The second method is generate_decoder_path, whose structure is mirrored to that of the 

encoder. This time the ant’s path needs to start from where the previous one end. As a result, the 

graph begins with the input_layer, whose input shape corresponds to the shape of the latent 

space. After the first layer, one Dense and Reshape layers are added. Their purpose is to rebuild 

the same vector shape as before it was compressed to the latent_space. Following layers are 

added with the same logic as they were in the encoder method. Lastly, we obtain the rebuilt data 

as an output. Decoder representation (Figure 32), which matches with the above encoder (Figure 

31).  
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Figure 32 Structure of layers in a decoder 

 Once the encoder and decoder models are built, the next step is to use them as functional models 

as a whole to form an autoencoder model. This can be represented by the following equation: 

𝑦 =  decoder(𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥)) (9) 

where x is the input to the model and y is its reconstruction 

The final structure of the autoencoder model with its input_layer, encoder_layer, and 

decoder_layer is shown in Figure 33. 

 

Figure 33 Structure of layers in the autoencoder 
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The next step is to apply the local update of used pheromone by ant depending on the specified 

layers in the generated model. This cycle continues until ant_count for current_depth is 

reached. Once this is done, the ants are sorted by the metrics score they achieve, and if a new best 

ant is discovered, this is also updated. The new best ant may then be used to apply a global 

pheromone update. At the end of the ACO search algorithm, the best ant is returned to the 

DeepSwarm. 

5.4.5 Evaluation 

The evaluation of an ant is done by running the model it produces. This is done with multiple 

matrices which help us to visualise the model’s training and final predicted results of anomalies in 

a dataset. Therefore, we can see how the model performed through the training and validation 

dataset. 

The first metric on our list is the training_loss, which shows the train_loss and val_loss 

during the fitting of our model to training data. The value of train_loss is the distance between 

the ground truth and the reconstruction. In this combination (training and validation loss) a portion 

of training data during each epoch is used as validation, expressed by vall_loss. With this graph, 

we can better understand how the model is learning during the learning steps. If the val_loss 

starts to increase or is stale, it is better to stop the training to prevent overfitting. Generated plots 

are shown in Figure 34. 

 

 

Figure 34 Training loss metrics 
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The second metric is similar to the previous one, except that it measures the accuracy of the model. 

Therefore, we have the combination of train_acc and val_acc to plot on our graph (Figure 35). 

At first sight, it might not be clear why we should be interested in accuracy when dealing with the 

unsupervised learning model, but our initial aim when training the model is its ability to reconstruct 

data as best as possible since this difference between original and reconstructed data will serve as 

a threshold for anomaly detection.  

 

Figure 35 Training accuracy metrics 

Continuing with the metric is helpful to a human operator who controls the training. It helps to 

visualise the results, especially when we are training the model with multiple labels, how the 

original image is compressed and decompressed through the NN model. As seen in Figure 36, we 

can assume that some data instances can be potentially identified as false anomalies, due to poor 

reconstruction by the model, and are therefore prepared for manual inspection. A potential 

candidate for inspection is number 7 (third example from the left). 

 

Figure 36 Orginal, compressed, and reconstructed image representation 
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Another metric method that is helpful during the training and final validation is the loss function 

MAE_loss which uses mean absolute error (MAE), to compute the squared error between the 

original image and the reconstructed image. When calculating it on all data instances we can see 

the bar chart showing us number_of_samples that fall into a specific MAE loss value in the 

following Figure 37. 

 

Figure 37 MAE loss in training samples 

The next metrics are a direct evaluation of the model when it comes to the final goal of the whole 

workflow of AutoDaedalus. Starting with the receiver operating characteristic visualisation (ROC). 

With it, we can get a good overview of the trade-off between sensitivity (true positive rate (TPR)) 

and specificity (1 – false-positive rate (FPR)). To calculate the ROC curve, in our scenario we need 

to measure how good our model is when it comes to detecting anomalies within a specific quantile 

of the dataset. Since all data instances that have greater reconstructed error (measured by MSE) 

fall into a specified quantile (specified by anomaly_quantile parameter). With quantile and MSE 

values, calculation of which data instances represent anomalies and which ones are normal is 

possible. Secondly, the confusion matrix needs to be calculated from the previously determined 

normal and anomalous data instances. This is shown in the following Table 2. 
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Actual / Predicted Anomaly Normal 

Anomaly TP FN 

Normal FP TN 

Table 2 Confusion matrix 

Where true positive (TP), false negative (FN), false positive (FP), and true negative (TN) are 

calculated by the following rule: 

𝑇𝑃 = 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑔𝑖𝑣𝑒𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (10) 

𝐹𝑁 = 𝑎𝑙𝑙 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 − 𝑇𝑃 (11) 

𝐹𝑃 = 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 − 𝑇𝑃 (12) 

𝑇𝑁 = 𝑎𝑙𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 − 𝐹𝑃 (13) 

 

From that point calculation of precision, recall and F-score is calculated as well. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(14) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(15) 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(16) 

 

Once all intermediate matrices for ROC are calculated, we can proceed to the next function which 

is to calculate TPR, FPR, and needed false negative rate (FNR) and true negative rate (TNR) values 

over the range of quantiles [0 … 1]. During quantile range iteration, the threshold for separation 

between normal and anomalous data is changed and therefore the values of the matrix table are 

changed accordingly. With values in the confusion matrix changed, the following metrics are re-

calculated: 
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𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(17) 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(18) 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(19) 

𝐹𝑃𝑅 = 1 − 𝑇𝑁𝑅 (20) 

 

Once all mentioned metrics are calculated over the different ranges of quantile, the line for the 

ROC curve can be plotted with the associated area under the curve (AUC) score. An example of the 

ROC curve is shown as a green-dotted line in Figure 38. From the plot, we can see the correlation 

between the TPR and FPR values in the range [0 … 1]. These values are calculated by moving 

quantile values on a range [0 … 1] by step 0.01. 

 

Figure 38 ROC curve for autoencoder model 

5.4.6 Finding the best model 

The best model can be automatically found by providing the desired metric to the configuration 

file. Since the term “best” can represent the different metrics for a given dataset and desired 

distinction between normal and anomalous data instances, the most appropriate method is still to 

manually handpick the model which does the job well in a specific scenario with the help of all 

available matrices. 
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Chapter Ⅵ 

6 EXPERIMENT 

With the experiment, we wanted to see how well a manually built autoencoder detects anomalies 

in a dataset compared to the best model generated by our open-source AutoDaedalus project. 

Since there are many ways to build an autoencoder architecture, we have set limits to the extent 

of the experiment. The same goes for anomaly detection which is specific to the given dataset. The 

experiment was an excellent testing technique in software development since it gave us a better 

understanding of the components that are required to build a system that is as sophisticated as 

AutoDaedalus. One of the main goals of the experiment was to allow other researchers to replicate 

the experiment, which is why we included a script in the project that is ready to build the manual 

autoencoder by changing the model layers, a separate script that can run a specific model on-

demand, and the ability to save all the generated models and associated matrices in a specified 

location on a disk. All of this is beneficial for continuous testing and development. 

6.1 Experimental environment 

6.1.1 Dataset overview 

The MNIST dataset was used for all conducted experiments. The dataset contains 60,000 training 

and 10,000 testing small square 28x28 pixel grayscale images. All digits are handwritten and are in 

the range [0 … 9]. The distribution of classes in a dataset is seen in Table 3: 
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Value Train count Train % Test count Test % 

1 6742 11.24  1135 11.35 

7 6265 10.44 1028 10.28 

3 6131 10.22 1010 10.1 

2 5958 9.93 1032 10.32 

9 5949 9.92 1009 10.09 

0 5923 9.87 980 9.8 

6 5918 9.86 958 9.58 

8 5851 9.75 974 9.74 

4 5842 9.74 982 9.82 

5 5421 9.04 892 8.92 

Table 3 MNIST dataset class distribution 

Parameter test_size from configuration file was for all experiments set to 0.2 (train : test) with 

random_state value set to 42. 

6.1.2 Software components 

For experimental purposes the following packages, programmes, and frameworks were used: 

Library / Frameworks / IDE / Version 

Linux kernel 5.11.0-27-generic 

Ubuntu 20.04.2 LTS 

Tensorflow 2.4.1 

Keras 2.3.1 

CUDA release 11.1 

Python 3.8.10 

DeepSwarm 0.09 

PyCharm 2021.1.1 (Professional Edition) 

Pyyaml 5.3.1 

Scikit-learn 0.22.2 

Numpy 1.21.2 

Seaborn 0.11.1 

Table 4 Used software components 
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6.1.3 Types of generated models 

All models in the experiments are generated by one of two options. Either they are generated by 

the AutoDaedalus programme or they are manually created. Following are the allowed 

specifications during the experiment. 

• An experimental model can have: 

o Allowed types of layers: Input, Dense, Flatten, Reshape  

o The dense layer allowed attributes 

▪ Output size : [128, 64, 32, 16, 8, 4, 2] 

▪ Activation function: ReLU, LeakyReLU, Tanh, Sigmoid 

o Optimiser: Adam 

o Loss: binary_crossentropy 

o Metrics: accuracy, loss 

6.1.4 Available matrices 

When a model is generated, trained, and evaluated, the following infographics are created for it:  

Infographic name Explanation 

decoder_shape.png Shape representing decoder model 

Encoder_shape.png Shape representing encoder model 

Plt_acc.png Plot showing training and validation accuracy 

Plt_anomalies_095.png Plot showing found anomalies in quantile = 0.95 

Plt_anomalies_098.png Plot showing found anomalies in quantile = 0.98 

Plt_anomalies_0995.png Plot showing found anomalies in quantile = 0.995 

Plt_encoded_image.png Plot with original, compressed, and decompress image 

Plt_loss.png Plot showing training and validation loss 

Plt_MAE.png Plot showing MAE loss over a count of samples 

Plt_reconstructed_results.png Plot showing an original and decoded image 

Roc_curve.png Plot with ROC curve 

Autoencoder.yaml The configuration file used to generate a model 

Deepswarm.log Entire log during the AutoDaedalus run time 

Table 5 Generated infographic per NN model 
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List of information that is logged during the model evaluation: 

Logged information for N model 

Number of instances in the dataset 

The actual number of all anomalies in a dataset 

The actual number of all valid labels in a dataset 

Number of TP anomalies found in X quantile 

TP, FN, FP, TN values 

Recall, Precision, F1-score 

TPR, FPR, ROC, AUC values 

Table 6 Logged information when a model is evaluated 

6.2 Example of operational evolutionary NN 

Before reviewing the experiment between manually and auto-constructed NN models, let us look 

at how AutoDeadalus generates new models. As mentioned in the implementation chapter, it all 

starts with the configuration file. For this example, we will set it up to make a NN model capable of 

finding anomalies for a single label. This means we set up DataConfig parameters as follows: 

DataConfig: 

  valid_label: [1] 

  anomaly_label: [0]  

All others parameters in the configuration file remain as represented in the implementation 

chapter. When AutoDaedalus is run, it starts to search for the best-performing model architecture 

within the allowed limitations set by the configuration file, such as max_depth, allowed layers, 

ant_count per depth. Bellow, we can see the information which is logged once a model is 

generated during the search phase. 
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2021-08-20 09:48:24,259 

Current search depth: 1 

Generating ant: 1 

Ant: 0x7fde03e38580  

 Loss: 0.047672  

 Accuracy: 0.888302  

 Path: InputNode(shape:(28, 28, 1)) ->  

DenseNode(output_size:32,activation:LeakyReLU) -> 

FlattenNode() ->  

DenseNode(output_size:16, activation:Tanh) ->  

InputDecoderNode(shape:16) ->  

DenseNode(output_size:128, activation:Tanh) -> ReShapeNode(target_shape:(7, 7, 
1)) ->  

DenseNode(output_size:128, activation:Tanh) ->  

OutputNode(output_size:1, activation:Sigmoid)  

Hash: 5cacabbd674602951179f6482dabd8ed1cfd62b7f9738242d8e320b6d0fc5119 

The hash string, which is the universal key identifier when it comes to identifying a generated model 

in folders on a disk, may also be found in logged information. Once the model is created, it is 

evaluated using all of the matrices listed in Table 5 and Table 6. The above model (ant: 

0x7fde03e38580) is the best performing one at the moment (the best ant is calculated based on a 

parameter). This model will be the “best ant” until the evolutionary cycle continues and a new best 

ant is discovered.  
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2021-08-20 09:59:25,676 

New best ant found 

=========================================================================  

 Ant: 0x7fde0012edc0  

 Loss: 0.046139  

 Accuracy: 0.888457  

 Path: InputNode(shape:(28, 28, 1)) -> 

 DenseNode(output_size:128, activation:ReLU) -> 

 FlattenNode() -> 

 DenseNode(output_size:16, activation:Tanh) -> 

 InputDecoderNode(shape:16) -> 

 DenseNode(output_size:64, activation:Tanh) -> 

 ReShapeNode(target_shape:(28, 28, 2)) -> 

 DenseNode(output_size:64, activation:Tanh) -> 

 OutputNode(output_size:1, activation:Sigmoid)  

 Hash: 6917d7c05d4c5590cf3a537ee6ce1333019d61a5a3b1d98ec1117b1074e47ecd 

Once this happens, the ACO algorithm will replace it with the new one and corresponding measures 

will be executed such as update of global pheromone. At the end of set search space, we will have 

a collection of all generated models. 
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6.3 Anomaly detection with the help of an evolutionary NN 

When explaining anomaly detection, we need to first clearly understand what represents the 

anomalies in a given dataset. Anomalies are patterns in data which do not conform with the 

characteristics of normal data. Interpreting the previous sentence means that the majority of data 

instances must be from one class and the minority from a different class. This is valid only when 

training the NN model since at this stage it needs to learn the patterns in data in order to distinguish 

between class labels. When testing the model any ratio of normal and anomalous data instances 

can be presented, because at this stage the model has already learnt how to distinguish between 

the them. When data is pushed into a model with the objective of finding anomalies in the dataset 

the following happens: 

1. Reconstruction of data instances 

2. Calculation of MSE for each data instance 

3. Anomaly threshold is calculated based on a list of MSE and quantile limit 

4. Each reconstruction is checked to see whether it passes over the threshold or not 

5. Detected anomalies are displayed 

6. Model performance metrics are saved 

An example of anomaly detection is shown in Figure 39. 
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Figure 39 Anomaly detection example 
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6.4 Results 

In this section, we present two experiments together with the evaluation and final results. 

Experiments are differentiated only by the number of valid labels that are presented in the testing 

dataset. Digit classes rules were as follows: 

• Single-label experiment 

o Valid labels : [1] 

o Anomaly labels : [0] 

• Multi label experiment 

o Valid labels : [1,2,3,4,5,6,7,8,9] 

o Anomaly labels : [0] 

• Quantile value: 0.9 

In both experiments, we wanted to empirically test the model architecture that was generated by 

the AutoDaedalus method versus a manually built model, based on our experience and examples 

found online. Firstly we tested both methods on a single label experiment and secondly on the multi 

label experiment. Created architectures for each tested NN model are presented in the tables 

below. 

6.4.1 Single label experiment 

• Manual autoencoder implementation 

Settings used for a manually crafted model: 

Maximum depth set to 1: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 128 (ReLU, ReLU) 

Table 7 Manual model single label 1 layer 

Maximum depth set to 2: 

Depths / Parameters Encoder Latent space Decoder Activation 

1st layer 128 16 64 (ReLU, ReLU) 

2nd layer 64 16 128 (ReLU, ReLU) 

Table 8 Manual model single label 2 layer 
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Maximum depth set to 3: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 32 (ReLU, ReLU) 

2nd layer 64 16 64 (ReLU, ReLU) 

3rd layer 32 16 128 (ReLU, ReLU) 

Table 9 Manual model single label 3 layer 

Maximum depth set to 4: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 16 (ReLU, ReLU) 

2nd layer 64 16 32 (ReLU, ReLU) 

3rd layer 32 16 64 (ReLU, ReLU) 

4th layer 16 16 128 (ReLU, ReLU) 

Table 10 Manual model single label 4 layer 

Maximum depth set to 5: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 4 (ReLU, ReLU) 

2nd layer 64 16 16 (ReLU, ReLU) 

3rd layer 32 16 32 (ReLU, ReLU) 

4th layer 16 16 64 (ReLU, ReLU) 

5th layer 4 16 128 (ReLU, ReLU) 

Table 11 Manual model single label 5 layer 

• AutoDaedalus autoencoder implementation 

Settings used for an automatically generated model: 

Maximum depth set to 1: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 64 (ReLU, Tanh) 

Table 12 AutoDaedalus model single label 1 layer 
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Maximum depth set to 2: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 8 16 2 (LeakyReLU, LeakyReLU) 

2nd layer 128 16 2 (LeakyReLU, ReLU) 

Table 13 AutoDaedalus model single label 2 layer 

Maximum depth set to 3: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 16 (ReLU, Tanh) 

2nd layer 2 16 16 (Tanh, Tanh) 

3rd layer 2 16 8 (LeakyReLU, Tanh) 

Table 14 AutoDaedalus model single label 3 layers 

Maximum depth set to 4: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 8 16 64 (Tanh, ReLU) 

2nd layer 32 16 32 (LeakyReLU, Tanh) 

3rd layer 4 16 4 (ReLU, Tanh) 

4th layer 128 16 128 (Tanh, LeakyReLU) 

Table 15 AutoDaedalus model single label 4 layers 

Maximum depth set to 5: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 64 16 128 (Tanh, Tanh) 

2nd layer 4 16 128 (ReLU, ReLU) 

3rd layer 4 16 64 (Tanh, ReLU) 

4th layer 128 16 16 (ReLU, Tanh) 

5th layer 8 16 128 (LeakyReLU, Tanh) 

Table 16 AutoDaedalus model single label 5 layers 
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6.4.2 Multi label experiment 

• Manual autoencoder implementation 

Settings used for a manually crafted model: 

Maximum depth set to 1: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 64 16 128 (ReLU, ReLU) 

Table 17 Manual model multi label 1 layer 

Maximum depth set to 2: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 64 (ReLU, ReLU) 

2nd layer 64 16 128 (ReLU, ReLU) 

Table 18 Manual model multi label 2 layer 

Maximum depth set to 3: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 32 (ReLU, ReLU) 

2nd layer 64 16 64 (ReLU, ReLU) 

3rd layer 32 16 128 (ReLU, ReLU) 

Table 19 Manual model multi label 3 layer 

Maximum depth set to 4: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 16 (ReLU, ReLU) 

2nd layer 64 16 32 (ReLU, ReLU) 

3rd layer 32 16 64 (ReLU, ReLU) 

4th layer 16 16 128 (ReLU, ReLU) 

Table 20 Manual model multi label 4 layer 
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Maximum depth set to 5: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 4 (ReLU, ReLU) 

2nd layer 64 16 16 (ReLU, ReLU) 

3rd layer 32 16 32 (ReLU, ReLU) 

4th layer 16 16 64 (ReLU, ReLU) 

5th layer 4 16 128 (ReLU, ReLU) 

Table 21 Manual model multi label 5 layer 

• AutoDaedalus autoencoder implementation 

Settings used for an automatically generated model: 

Maximum depth set to 1: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 64 16 32 (Tanh, LeakyReLU) 

Table 22 Figure 55 AutoDaedalus multi label 1 layer 

Maximum depth set to 2: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 2 16 2 (Tanh, LeakyReLU) 

2nd layer 64 16 2 (ReLU, LeakyReLU) 

Table 23 Figure 55 AutoDaedalus multi label 2 layer 

Maximum depth set to 3: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 4 16 2 (ReLU, Tanh) 

2nd layer 4 16 8 (LeakyReLU, Tanh) 

3rd layer 16 16 128 (LeakyReLU, ReLU) 

Table 24 Figure 55 AutoDaedalus multi label 3 layer 
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Maximum depth set to 4: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 128 16 4 (Tanh, LeakyReLU) 

2nd layer 128 16 128 (Tanh, Tanh) 

3rd layer 2 16 16 (ReLU, Tanh) 

4th layer 8 16 4 (LeakyReLU, ReLU) 

Table 25 Figure 55 AutoDaedalus multi label 4 layer 

Maximum depth set to 5: 

Depths / Parameters  Encoder Latent space Decoder Activation 

1st layer 32 16 2 (LeakyReLU, Tanh) 

2nd layer 8 16 8 (ReLU, LeakyReLU) 

3rd layer 64 16 128 (ReLU, LeakyReLU) 

4th layer 4 16 8 (Tanh, Tanh) 

5th layer 8 16 2 (LeakyReLU, Tanh) 

Table 26 Figure 55 AutoDaedalus multi label 5 layer 

6.4.3 Comparison of methods 

After both of the tested methods gave us results for each best NN model of a given depth, the next 

step was to compare different results based on available metrics. Because the majority of our 

metrics are based on anomaly detection outcomes, our primary goal was to discover a better 

performing method on our dataset for each experiment.  

Let us begin with the single-label experiment. The given results are from the above NN models 

presented in tables: Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 

15, Table 16. 
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NN Model Depth on one side Recall Precision F1-score AUC 

Manual method 1 0.215 0.995 0.354 0.997 

Manual method 2 0.215 0.995 0.354 0.997 

Manual method 3 0.246 1.000 0.356 0.997 

Manual method 4 0.216 1.000 0.356 0.998 

Manual method 5 0.214 0.991 0.352 0.997 

Max  0.246 1.000 0.356 0.998 

Total  1.106 4.981 1.772 4.986 

Table 27 Single label experiments result for the manual method 

 

Figure 40 ROC curve of the best performing model produced by the manual method in the single label 

experiment 
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NN Model Depth on one side Recall Precision F1-score AUC 

AutoDaedalus method 1 0.213 0.986 0.351 0.991 

AutoDaedalus method 2 0.212 0.981 0.349 0.991 

AutoDaedalus method 3 0.215 0.995 0.354 0.992 

AutoDaedalus method 4 0.213 0.986 0.351 0.992 

AutoDaedalus method 5 0.213 0.986 0.351 0.990 

Max  0.215 0.995 0.354 0.992 

Total  1.066 4.934 1.756 4.956 

Table 28 Single label experiment results of the AutoDaedalus method 

 

Figure 41 ROC curve of best performing model produced by the AutoDaedalus method in a single label 

experiment 

When comparing the results of Table 27 and Table 28, we can see that both methods rendered very 

similar results in the single label experiment. Even the ROC curves in Figure 40 and Figure 41 show 

very similar results. This is mostly due to the fact, that both of them are close to perfection. This 

means that both experimental methods are able to distinguish between normal and anomalous 
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data instances with very high certainty. One of the reasons for such good results is the big difference 

between the normal and anomalous data instances that were compared, with 1 and 0 digits having 

a clear difference in shape and structure. Looking a little more critically at these tables, we see that 

the manual method performed a bit better in this experiment. The largest difference was in the 

recall metric and AUC score. Aside from that, we can say with strong confidence that both methods 

performed very well with our selected dataset.  

The second experiment was designed to have a more complex dataset. The reason for this is that 

we wanted to ensure that the small difference between the two methods in the first experiment 

grew larger. Furthermore, datasets with multiple number labels in the valid class and a single 

number label in the anomaly class are thought to be more realistic. Since even human experts are 

unable to define rules that apply only to anomalies in real-world applications. Results from multi 

label experiments with the above NN models are presented in tables: Table 17, Table 18, Table 19, 

Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26. Results from the multi label 

experiment are shown below. 

NN Model Depth on one side Recall Precision F1-score AUC 

Manual method 1 0.223 0.219 0.221 0.748 

Manual method 2 0.199 0.195 0.197 0.731 

Manual method 3 0.191 0.187 0.189 0.729 

Manual method 4 0.202 0.198 0.200 0.759 

Manual method 5 0.218 0.214 0.216 0.776 

Max  0.223 0.219 0.221 0.776 

Total  1.033 1.013 1.023 3.743 

Table 29 Multi label experiments result for a manual method 
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Figure 42 ROC curve of the best performing model produced by the manual method in the multi label 

experiment 

 

NN Model Depth on one side Recall Precision F1-score AUC 

AutoDaedalus method 1 0.208 0.204 0.206 0.751 

AutoDaedalus method 2 0.194 0.190 0.192 0.745 

AutoDaedalus method 3 0.212 0.208 0.210 0.780 

AutoDaedalus method 4 0.193 0.189 0.191 0.776 

AutoDaedalus method 5 0.501 0.491 0.496 0.877 

Max  0.501 0.491 0.496 0.877 

Total  1.308 1.282 1.295 3.929 

Table 30 Multi label experiments result for the AutoDaedalus method 
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Figure 43 ROC curve of the best performing model produced by the AutoDaedalus method in the multi label 

experiment 

This experiment was more computationally intensive and thus executed for a much longer period, 

especially when AutoDaedalus needed to find the best performing models out of 50 models 

(max_depth=5, ant_count=10). Nevertheless, the experiment furnished us with very 

interesting results. Looking at Table 29 and Table 30, we can say that both methods proved 

themselves with relatively good results, but in the end, AutoDaedalus rendered the better-

performing NN model. As we can see all of the metrics were better when compared to the manual 

method. Also, the ROC curves in Figure 42 and Figure 43 show that the best AutoDaedalus model 

outperforms the best manually built model. When comparing the slopes of the curves, we can see 

that the one in Figure 43 is steeper than the one in Figure 42. As a result, TPR becomes bigger faster 

with fewer data instances compared to FPR, and therefore more correctly identified anomalies in 

the dataset. 
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The results from both experiments are presented in Table 31 and Figure 44. 

NN Model Experiment Calculation Recall Precision F1-score AUC 

Manual method Single label MAX 0.246 1.00 0.356 0.998 

Manual method Single label TOTAL 1.106 4.981 1.772 4.986 

Manual method Multi label MAX 0.223 0.219 0.221 0.776 

Manual method Multi label TOTAL 1.033 1.013 1.023 3.743 

AutoDaedalus method Single label MAX 0.215 0.995 0.354 0.992 

AutoDaedalus method Single label TOTAL 1.066 4.934 1.756 4.956 

AutoDaedalus method Multi label MAX 0.501 0.491 0.496 0.877 

AutoDaedalus method Multi label TOTAL 1.308 1.282 1.295 3.929 

Table 31 Comparison of experimental results (tabulated) 
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Figure 44 Comparison of experimental results (graphed)  
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Chapter Ⅶ 

7 DISCUSSION 

In this chapter, we will interoperate and discuss the experimental results. As we have seen in the 

previous chapter, we have split our testing into two experiments. First, we will discuss the first 

experiment where we had a dataset with one (1) valid class and one (0) anomaly class. Results have 

shown that both methods produced highly accurate anomaly detection in the MNIST dataset. This 

is also true for all model depths in both methods. It is interesting to see that AutoDaedalus 

generated NN models with a lot of different combinations of activation functions and output space 

dimensions, but was nevertheless able to render NN models with results that were almost identical 

to those rendered by the manual method. This is a good indication that not only the logically 

accepted architecture designed by human NN architects can perform well. Upon further inspection 

of the results of the first experiment we can say that the best NN models created by the manual 

models were at a depth of 3 and 4. In comparison, AutoDaedalus generated the best NN model 

with a depth of 3. To summarise, based on our measurements depth 3 is the peak value at which 

the NN model detects anomalies the best. Moving to the second experiment, we can easily see that 

the results were not as good as those of the first experiment. There are several reasons for this. 

The greater complexity of the dataset, with valid values in classes (1,2,3,4,5,6,7,8,9) and anomalous 

values in class 0, and the relativity simple type of layers (Dense) for such a task. If the precision 

metric which measures the ability of a model to identify only the relevant data points, reached a 

value of 1 (1 is the best) in the first experiment, then it had in the second experiment on average 

one-quarter of the value. Also, when looking into recall metrics we can see that both NN models 

from the manual and AutoDaedalus methods, had some difficulties identifying valid values as 

anomalies due to the large reconstruction losses of the NN models. The reason for this is that when 

the NN model was trained, it was unable to achieve better accuracy, mainly because of the 

simplicity of the architecture required for this task. When looking only at the F1-score we might 
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think that the results are not of much use, but we need to consider that a big factor is the 

acceptance of the value of the quantile that we chose for anomaly detection. The border between 

normal and anomaly in a dataset can be a relative term. Since there is no clear definition of what a 

true anomaly is in a specific dataset. An example in the MNIST dataset can be made of the numbers 

1 and 7. To what extent will we claim that 1 does not look like 7, or vice versa? When considering 

this we must understand that the model found a specific data instance which it was unable to 

recreate with a small loss, and therefore it could still have been an anomaly even though its class 

represented the valid label. On the other hand, specific anomalous data instances can have a small 

reconstructed loss, and therefore would not be detected as an anomaly since it would not fall over 

the selected quantile. Nevertheless, looking back over the results of this experiment we can 

summarise that there was no particular outstanding NN model depth which was best among the 

manually created NN models, but on the AutoDaedalus side a clear winner was the NN model with 

a depth of 5. Not only was it the best in its class, but it was also the best in the whole second 

experiment. Its anomaly detection success was more than half. From the output in log files, we 

found that it identified 491 anomalies as true positives out of all 980 anomalies in the dataset. With 

this finding, we can safely conclude that our AutoDaedalus method offers competitive performance 

compared to our list of manually created NN models with a simple dataset and even better results 

than the manual method when faced with a more complex dataset. We assume that a reason for 

the better performing NN model could lie in its architecture since in a complex dataset a key to 

better performance can be a combination of different activation functions and a mixed distribution 

of output space dimensionality. 

With all tests under the hood, we can conclude our hypothesis. When answering the first research 

question RQ1, we can accept the H1 hypothesis, since the total sum of the F1-score and AUC for all 

models grouped by method is 3.5% higher with the AutoDaedalus method than with the manual 

method. When finding the answer to the second research question RQ2, we need to limit the scope 

of the question. If we are looking for the best overall NN model, then the H2 hypothesis is true. But 

if we are looking at all constructed NN models with both methods, the result of the H2 hypothesis 

is negative. Therefore, we partly accept the H2 hypothesis. When it comes to acceptance of the H3 

hypothesis, which answers the research question RQ3 we can strongly accept it, since swarm 

algorithms, in our case ACO, proved themselves when building autoencoder architectures. 

Hypothesis H3 is accepted. We end this discussion with the acceptance of the thesis as well since 

our experiments proved that novel NN models can be designed by the AutoDaedalus method. 
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Chapter Ⅷ 

8 CONCLUSION 

At the beginning of our master’s thesis, we set five goals to help us answer the research questions 

that interested us. Throughout the whole work, we have focused on providing the necessary theory 

and development of tools in order to obtain solid outcomes, and to confirm the hypotheses based 

on these research questions. 

We have followed up the master’s thesis by reviewing the necessary theory. With this, we gained 

additional knowledge on multiple topics. At the start, we briefly introduced machine learning 

concepts, which are needed to understand neural networks. We wanted to understand how various 

types of NN architectures are formed and how certain activation functions help during the DNN 

training. All this knowledge was a great help in understanding what possibilities there are for the 

construction of NNs. Since we wanted to build a model that would be capable of self-building NN 

architectures, we needed to understand the main parts of the NAS technique. We learned that the 

search space represents the edge boundaries, where the search strategy operates when it comes 

to the construction of NN architectures. In practice, the search space can include concepts such as 

layer types, how they are connected, and various parameters. Finally, we needed a performance 

estimation technique, which in our case would need to be based on a swarm intelligence system. 

Once we gathered the knowledge of NN construction, we moved on to understanding what 

anomalies are and how best to detect them. Before detecting anomalies we needed to understand 

different types, such as the point, contextual and collective anomaly. In addition, we wanted to 

understand what data noise is and how it differs from an anomaly. Until now, we have looked at 

the entire setup of the NAS method and its objective in our work. We next started to research how 

we may provide a solution to the aforementioned anomaly detection. We proposed a special type 

of NN autoencoder as a solution whose natural architecture is tailored to our needs. We explored 

autoencoder properties such as encoder, latent space, decoder, model depth, autoencoder types, 
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and applications in which it may be utilised. The final part of our research was to find out how we 

can automatically construct multiple autoencoder models and evolve them by use of the ACO 

algorithm. As we learned from the ACO algorithm, if one of the ants is not able to construct a NN 

model with good performance, others follow stigmergically and continue the exploration until the 

best NN model is constructed. With all of the theory in place, the practical phase could begin. We 

completed the goals of our master's thesis by building the open-source AutoDaedalus programme 

which is capable of constructing new autoencoder topologies using the ACO algorithm based on 

the search space limitations specified in the configuration file. We may use it to identify the best 

performing NN models for anomaly detection. During the implementation, we explained the 

workflow of AutoDaedalus with several examples and infographics. In the experimental chapter, 

we have reported two experiments and compared the manual and AutoDaedalus methods on the 

MNIST dataset to detect as many anomalies as possible. The purpose of the experiments was to 

obtain answers to our research questions and hypotheses. When we compared the two methods, 

we discovered that there is no significant difference between them for a simple dataset. Differences 

became noticeable when we began the second experiment, which used a considerably more 

complicated dataset. In this experiment, our proposed method proved its effectiveness by 

constructing a better performing NN model. At the end of our master’s thesis, we can conclude that 

the NAS technique using swarm intelligence as a search strategy can construct novel autoencoder 

architectures that can be deployed for anomaly detection. 
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