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Abstract—Industry 4.0 introduced the application of various
remote sensing and intelligent or autonomous decision-making to
the manufacturing floors. One of the most important aspects is
the maintenance of the machinery and equipment preemptively so
that their breakage does as minimal damage (in downtime, safety,
etc.) as possible. Analyzing the machinery data with machine
algorithms (especially artificial neural networks (ANN)) plays a
crucial role. However, designing and training ANN algorithms
is still a time-consuming and complex process with various
remaining issues, including generalization, the necessity for large
datasets, and high time complexity. As a result, a few decades ago,
neuroevolution was developed to improve the ANN construction
process. Recently, it has gained considerable attention alongside
a rise in computational power. In this paper, we use the power
of neuroevolution to design a specific type of ANN called an
autoencoder (AE) which can be used for a particular type of
task, such as anomaly detection (AD). Our proposed method,
has shown promising results. Our approach achieved a peak test
accuracy of 75% in 0.4 quantiles and an area under the curve
(AUC) of 73% in AD on the predictive maintenance dataset.
Our proposed method can serve as a starting point for further
research.

Index Terms—Predictive maintenance, neuroevolution, autoen-
coder, anomaly detection.

I. INTRODUCTION

Industrial processes are heavily reliant on the working
condition of the machinery and equipment which, in turn,
influence work conditions, the safety of workers, and profits.
With the rise of Industry 4.0, where continuous monitoring of
the machinery and equipment is available with various sensors,
the optimization of industrial processes has become one of the
main pillars of an efficient and safe industry [1]. Thus, when
the sensor data indicates that the machine or equipment is on
a trajectory towards failure, preemptive maintenance should
be done. This preemptive step minimizes downtime of the
industrial process, prevents total breakdown of the machine or
equipment, and enables optimization of the whole industrial
process. This process is called predictive maintenance [1]-[3].

Unfortunately, data from machinery sensors is not enough,
as the patterns of failure are normally too hard to recognize by
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any human expert. Thus, the application of machine learning
methods on this sensor data has seen wide adoption in the
industry and gained traction in the research community [4],
[5]. Even though machine learning approaches are already
being widely used for predictive maintenance, there is still a
lack of serious research done on how these approaches should
be optimized to work without bias and as efficiently as possible
[5], [6]. Various nature-inspired meta-heuristic optimization
approaches have been previously used to tackle this problem
[7]1-[9], yet there is still no serious application or research
utilizing these nature-inspired optimization approaches for
predictive maintenance.

To address the mentioned issues and potential solutions,
we propose a method utilizing a modified version of Neu-
roevolution of Augmenting Topologies (NEAT) [10] called
autoencoders-neat for anomaly detection (ANAD). ANAD
utilizes the power of neuroevolution to construct novel au-
toencoder neural network architectures that can be used for
unsupervised anomaly detection. We summarise our contribu-
tions as follows:

o We present a modified version of the NEAT algorithm
for constructing the autoencoder architectures.

o We present a new evaluation technique for measuring the
performance of these autoencoder architectures.

e We apply the ANAD method on real life predictive
maintenance data from pumping system bearings located
in a sewerage treatment plant.

II. ANOMALY DETECTION FOR PREDICTIVE MAINTENANCE

Predictive maintenance of machinery sensors is usually
treated as a supervised machine learning problem, as the ma-
chinery breakdown events are labelled [11]. However, in cases
where there is no existing data of machinery breakdown, and
the implementation of a predictive maintenance system pre-
vents the long-term collection of such data, another approach
has to be taken. In these cases, unsupervised anomaly detection
(sometimes called novelty detection or outlier detection) has
to be adopted, where preventive maintenance is commenced
when an unusual operation state of the machinery is reached.
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The strategies employed for a given anomaly detection
challenge are determined by the presence of labels in the
dataset. In some circumstances, future projections are based on
prior observations, whilst in others, they are primarily dynamic
and must be recognized ad hoc. Three techniques for anomaly
detection are primarily used [11]: (1) the supervised technique,
where labels on anomalous and normal data instances are
given; (2) a semi-supervised technique where only normal
instances are annotated with labels and others are indicating
a pre-captured spectrum of anomalies; (3) An unsupervised
technique where we do not have any information on which
instance is normal or anomalous.

When dealing with machinery sensor data without any
labels, the last technique is considered. In this case, the labels
do not play any role during the training of the anomaly
detection model. In other words, the anomaly detection model
learns to distinguish normal data from unusual data, and
hopefully that unusual data is the data that we should perform
preventive maintenance on.

A. Autoencoders for anomaly detection

In a paper published by Pierre Baldi [12], the author
defined AEs as simple circuits capable of transforming inputs
into outputs with as little distortion as possible. They first
appeared in academic papers in the 1980s to solve the issue
of backpropagation in the topology of conventional neural
networks (NNs). The idea behind an AE is that the input data
serves as a teacher for the final output. In this way, we cut
down on the need for any additional system which would rate
our NN output.

Typically, an AE is composed of three parts. The encoder,
which is a feedforward NN responsible for compressing the
input into a smaller vector representation. Then comes an
abstract concept known as the latent space, in which just
the most important characteristics are preserved. Practically
speaking, this is not a component of the NN. Rather, it is
an encoder output. This compressed data is eventually sent
to a decoder, which is responsible for restoring the data to
its original dimensions with as little reconstruction loss as
possible. The encoder and decoder could be mirrored if the
AE is symmetrical (in NN depth and layers), but this is not
necessarily the case. An example of such an AE is described
in Figure 1.

Aside from the numerous applications of AEs in the industry
[13]-[15], they can also be used effectively to discover anoma-
lies in datasets. The learning process of an AE is designed in
such a way that it learns the latent space better for normal
versus anomalous samples during training. The key is that
normal data represents the great majority of samples during
training. As a result, it will have a low reconstruction error
on normal data and a high reconstruction error on anomalies.
The learned NN model can then be used to detect anomalies.

Using deep hidden layers, as is common with all types
of NNs, can result in many advantages. The same holds for
encoders and decoders. Deeper AEs outperform shallow AEs
in terms of data compression [15], but choosing the deep

Latent

Input space

Output

Encoder Decoder

Fig. 1. Example of symmetrical AE components.

architecture is tedious work, which is usually done by manual
selection by a machine learning practitioner. Thus, other tech-
niques have to be used to solve the problem of NN architecture
selection. There is already a wide variety of research done
on architecture building with meta-heuristic nature-inspired
optimization techniques, but they haven’t been applied to the
problem of predictive maintenance with autoencoders.

III. NEUROEVOLUTION OF AUGMENTING TOPOLOGIES

Back in the 2000s, there were theories on how neuroevolu-
tion (NE) could contribute to designing the topology of neural
networks, since at this time there were only recent studies on
weight evolving artificial neural networks. At this time, fixed-
topology NE had already outperformed topology-evolving
systems [15] on the pole balancing task, which was and still
is a good benchmark for NE or reinforcement learning. This
suggested that there is an open question of whether Topology
and Weight Evolving Artificial Neural Networks (TWEANNS5)
can enhance performance. When striving to outperform fixed-
topology NE, the NEAT [10] authors came up with three
important solutions. One is to utilize historical markings
to align genes of the same origin. This is important when
performing crossover between genomes in a meaningful way.
The second challenge is to ensure that topological innovation
does not disappear from the population prematurely. This
is accomplished by dividing each innovation into separate
species. The third challenge is minimizing the topology over
time without the use of a sophisticated fitness function. The
authors’ answer was elegant and simple: start with a minimal
structure and expand only when necessary.

In NEAT, during the evolution process, the hidden nodes
of the architecture are evolved. Hidden nodes can be added
or deleted as the topology of the network grows. Connection
genes specify in and out nodes, the weight of the connection,
an enabled parameter indicating if the connection is alive,
and a parameter innovation number indicating when in the
evolutionary process the gene emerged.

As with every other NE system, a mutation might appear in
a connection weight in NEAT. However, structural mutations
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can occur in two ways: by adding/deleting a connection or
by adding/deleting a node in the topology. When a new
connection is added between a start and end node, it is
assigned a weight at random. When a new node is added, it is
placed between two existing connected nodes. This causes the
prior connection to be deactivated. This previous connection
and its weight are now linked to the new node, and the new
node is linked to the previous end node with a weight of 1.
Both types of mutation are described in Figure 2
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Fig. 2. The two types of structural mutations in NEAT.

Before performing crossover, the algorithm must be able
to tell which individuals in the population are similar, since
blindly choosing individuals can result in non-functional mod-
els. Having multiple ways to express a solution to a weight
optimisation problem with a NN is referred to in the literature
as a Competing Convention Problem. Crossover is likely to
result in injured offspring when genomes represent the same
solution but do not have the same encoding (each of them is
a permutation of the other).

The important solution to get around this problem in NEAT
is determining which two genes have the same historical origin
(they represent the same structure), as they are both descended
from the same ancestor gene at some point in the past. As a
result, all the system needs to do is keep track of the historical
origins of each gene in the population. When it comes to
crossover operations, each gene can be aligned and potentially
crossed over, making it less probable that two incompatible
individuals will be chosen, resulting in an offspring that isn’t
functional. Each time a structural mutation happens, such
as adding a new node or connection, a global innovation
number is incremented and assigned to this gene, allowing
easy alignment when it comes to breeding two individuals.
As the authors of NEAT stated, this operation requires very
little computation and is simple, without the need for any
topological analysis.

The concept of speciation in NEAT stems from the fact that
adding new structure to a network usually results in a drop in
fitness, which increases the likelihood of it being eliminated
from the population before it has had a chance to optimize. As
a result, the mechanism for preserving topological innovation
is to divide the population into species. By doing so, we
can ensure that individuals compete within their own niche
(similar topologies) rather than with the entire population. This
enables individuals to optimize under softer conditions. We
may say that NEAT supports talented/unique/unconventional
topologies before they must compete with other niches in the
entire population.

NEAT goes even further by introducing explicit fitness
sharing. Individuals share their performance across species,
promoting higher-performing species while enabling other
species to experiment with structural optimization before being
out-evolved.

To keep reproduction within the species, the original authors
needed to define a rule for what makes two individuals
compatible. In nature, a species is defined as having the ability
to reproduce solely within its species and not with individuals
from other species. In NEAT, the same set of rules apply,
using the historical markings to track the roots of individuals.
When observing individuals, if they have too many excess
and disjoint genes, they are probably incompatible with each
other. The following equation (1) describes how compatibility
distance is calculated. When the distance between two indi-
viduals is less than a specified threshold, they are regarded as
belonging to the same species.

ClE CQD _—
0= N + N +csW (1)
where E and D denote the number of excess and disjoint
genes; N is a total number of genes W is representing the
average connection weight difference; Coefficients are defined
by the user for altering the significance of these factors.

A. Minimal Structure

As noted in the original NEAT paper, they intended to avoid
the problems associated with randomly creating a complicated
topology that performs well on a specific task and then pruning
to find a simpler topology. Since the initial search space is
larger than we may require, there is no guarantee that a smaller
topology would perform as well. Instead, the goal is to start
with the simplest topology possible and evolve it over time,
only if it is beneficial through fitness evolution.

It starts with a topology using no hidden nodes. Each
individual in the initial population is nothing more than a set of
input and output nodes connected by many connection genes.
This would be insignificant on its own, but when combined
with the concept of speciation, it becomes a strong technique
for building on top of minimal topologies and achieving high
performance for a given complexity.

IV. PROPOSED METHOD

In the previous section, we discussed the fundamental
concepts of the NEAT algorithm. In this section, we will show
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how we can impose a specific NN topology on NEAT. The
reason for this is that we want to design the topologies (nodes
and connections) of NN that will represent AEs. This implies
that NEAT must create separate encoder and decoder genomes
that are compatible with one another. The middle layer, often
known as a bottleneck layer [16], is used to ensure com-
patibility between them (latent space). This prevents NEAT
from directly connecting nodes in the encoder to nodes in the
decoder. Instead, it connects the layers as follows: encoder,
bottleneck, decoder. By doing this, information is forced to
flow through the bottleneck.

Thus, the AE genotype holds two separate genomes: one
for the encoder and one for the decoder. Each of these is
evolved separately to ensure true exploration of the search
space. Regardless of that, they are still compatible through
the bottleneck layer.

a) Individual initialisation: NEAT constructs the geno-
type based on the supplied genome configuration during the
AE genome creation step. This configuration method deter-
mines if connections to hidden nodes are permitted, as they
must be connected in this case for the encoder and decoder
supplied by the configuration parameter.

b) Crossover: Steps in crossover operations remain the
same as they are in the original source code. As in the section
on individual initialisation, the steps here are duplicated for
the encoder and decoder. Therefore, the crossover method
is inheriting the connection and node genes separately for
the encoder and decoder. In crossover operations, excess
and disjoint genes are inherited by the fittest parent, while
homologous are combined from both parents.

¢) Mutation: Separate structural mutations are made on
the encoder and decoder genomes. This means that a node
or connection in the topology can be added or removed
independently on one side of the AE without requiring the
other side to perform the same operation. That algorithm does
not constrain AE topologies to being symmetrical.

d) Distance: Measuring the distance between the two
AE genotypes is done by first measuring the distance between
encoders and decoders separately and then summing up the
values to get the actual difference between the two AE
models. The result of this method is used to calculate genome
compatibility in the context of speciation.

A. Anomaly detection with ANAD

In our predictive maintenance scenario, we perform unsu-
pervised anomaly detection, which means that AE topologies
need to be trained on a dataset that contains both normal
and anomalous data instances. The idea is that models learn
relatively well to process the majority of data (normal in-
stances) but poorly to process the minority of data (anomalous
instances). The data instances that account for more than half
of all data instances make up the majority. The higher the
ratio of normal to anomalous instances, the more accurate the
ANAD method will be in making predictions.

Distances or densities are commonly used to determine what
is normal and what is an outlier [17]. It is worth noting that

NEAT’s NN models are not trained, but rather built from the
ground up. As a result, at the end of the evolution phase,
the algorithm returns the best performing individual. Simply
put, the individual is the autoencoder model that achieved the
highest metric AUC score. The metric score was calculated
by running the anomaly detection process on a testing dataset
for each individual (genome) separately. General steps in the
neuroevolution process are described in Algorithm 1.

Algorithm 1 Proposed method ANAD

Input: dataset,iter Max, fitThresh
Output: The best autoencoder

: population < initialPopulation()

. species < speciation(population)

s dter + 0

. bestFitness < evaluate(population, dataset)

: while iter < iterMax AND bestFitness < fitThresh do
parents < selection(population, species)
population < crossover(parents)
population < mutate(population)
bestFitness < evaluate(population, dataset)
species <— speciation(population)

iter < iter + 1

: end while

: bestGenome <— best(population, dataset)

: return bestGenome

N A R NI

e Sy —

In summary, Algorithm 1 begins with the simplest possible
AE topology (input layer, latent space, output layer) and then
allows NEAT to evolve the NNs until the evolution stops,
which is defined by a condition. Each genome is evaluated
based on the accuracy of anomaly detection in the testing
dataset. The chosen metric for evaluation is the receiver
operating characteristic (ROC) curve and AUC score. When
the condition is met, the best performing genome (AE model)
is returned.

V. EXPERIMENTS AND RESULTS

In this paper we focus on a real-world predictive mainte-
nance case of pumping system bearings. The data was gathered
from a sewerage treatment plant and consists of sensor data
acquired by monitoring the bearing movement, such as type,
temperature and vibration of the Driving End (DE) and Non-
Driving End (NDE) bearings of a pump. The dataset’s feature
values are represented solely by numerical values, with no
missing values and a weak correlation (average correlation of
features is 0.215). We standardised the data for each feature
before using it, which enables the NN to be generated with
weights that are more similar across the features, resulting in
more uniform topologies.

A. Environment setup

The experiment was carried out using the Python program-
ming language with the libraries: NEAT-Python [18] for NN
topology construction, Scikit-learn [19] for evaluating NN
models, NumPy [20] for working with arrays and NEAT based
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autoencoders [21]. The following computational resources
were used for the development and training environment:
Razer Blade 15 Advanced (RZ09-036) with Intel 17-10875H
CPU, Nvidia GeForce RTX 3080 with 8 GB GDDR6 memory
and 6144 CUDA cores GPU, and 32 GB DDR4 RAM.
Running on Ubuntu 20.04.2 LTS.

B. Evaluation of neuroevolution

First, we obtained the fitness function results throughout
the neuroevolutionary process. This helped us to determine if
the fitness of each individual is increasing from generation to
generation. Since our proposed method employs an evolution-
ary process, it is expected that individual fitness capabilities
should improve over time. Results are displayed in Figure 3,
where we can see how in the first 200 generations fitness
values increased drastically from 0.35 to 0.65 on the ROC
curve. This drastic jump is related to the quick transfer of
good genes into new generations. Here we can assume that in
the beginning, the neuroevolution algorithm is not aware of
what makes a good AE for a given dataset. As we proceed
through the generations, we can see how the growth in fitness
value levelled out and then continued to develop steadily. This
is valid until the 350th generation, after which the fitness
value’s development becomes less steep. This happens due to a
local optimum problem, which means crossover and mutation
between individuals in the population does not produce a
significantly better individual in terms of fitness value.

Another observation we can make from Figure 3 is a red
line (the best individual in the population) and upper green line
(41 standard deviation) which shows how better-performing
individuals can boost the entire population’s performance. This
impact is caused by the fact that nature-inspired algorithms
favour superior individuals to better exploit a local search
space. Another mechanism for overcoming this problem is
integrated into NEAT. As indicated in section III, the formation
of multiple species softens the impact of this problem. As a
result, the average fitness level of individuals is increasing.

Population's average and best fitness

—— average
==Eaa=1isd
—- +lsd
— best

Fitness

0 100 200 300 400 500
Generations

Fig. 3. Progression of solutions with neuroevolution through the generations.

C. Best performing topology

At the end of neuroevolution, the best performing individual
is selected. This is done by comparing the fitness values, and
the individual with the highest value is considered to be the
best performing. The topology of the winner model is divided
between the encoder and decoder, as seen in Figure 4.

‘ Inputs (60) ‘

Feedforward (5)

Japooug

’ Feedforward neurons (30) ‘

Latent space (30)

Feedforward neurons (60) ‘

LIS

Feedforward neurons (20)

J8po2aQg

’ Outputs (60)

Fig. 4. Best performing topology (simplified).

Together they are forming the AE model which can accept
input data and return the output. The winning topology con-
sists of an encoder side of 35 nodes, of which 5 are hidden,
and a decoder side of 85 nodes, of which 25 are hidden.
Together, they are forming a sum of 120 nodes in the AE
model. This AE model’s accuracy (reconstruction of data in
comparison to ground truth) reaches a peak value of 0.75 at
0.4 quantile and accuracy of 0.58 around a 0.99 quantile. In
the AUC metric, the model reached 0.73 area under the ROC
curve. This implies that the AE model was able to achieve
relatively good results.

Note that the resulting NN topology from ANAD (Figure 4)
is not a structure that we expect from manually built NNs
— there are no hidden layers, just hidden neurons without
forming any layer structure. Rather, a topology that appears
to be biologically inspired. For the sake of simplicity, the
topology of the best performing NN is depicted in the form
of layers, which include neurons with connections from and
to the same set of neurons.

VI. CONCLUSION

In this paper, we presented a proposed method ANAD. This
method is a modification of the existing NEAT algorithm,
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where we joined together the existing technologies to detect
anomalies. The idea was to use a neuroevolution approach
when building up NN topologies. Since many applications in
industry are using autoencoders for anomaly detection, we set
the objective of a neuroevolution algorithm to design an AE-
like NN topology.

Evaluation of the AE model was done on a testing subset
derived from the predictive maintenance dataset. Each data in-
stance inputted into the AE model was processed and returned
as an output, where we measured the difference between the
input and output by calculating the MSE. The next step was to
calculate the effectiveness of AD within various quantiles of
the MSE results. When a data instance’s reconstruction error
exceeds a specified threshold, it is considered an anomaly.
Once we had evaluation metrics in place, we continue with the
neuroevolution process, where each model was evaluated with
the fitness function. The result given by the fitness function
indicates the performance on anomaly detection measured by
the ROC-AUC metric. The higher the AUC-ROC score, the
more successful the model is when identifying true positives
and false positives. The AE model with the highest fitness
result was selected as the winning model.

The selected model was further tested to yield multiple
results. We determined, based on the metrics, that our proposed
method was proven to achieve surprisingly good results. With
ANAD, it is possible to detect more than 93.3% of true
positives and 40% of false positives. Nevertheless, we also
need to point out that in our work we used a fairly simple
metric to measure the model’s fitness score and only 500
generations in evolution. The primary goal of this study was
to put the proposed method to the test and see if it was useful
before moving forward with research in this field.

Our contribution to the field is that, from this point forward,
our suggested method can be used for any size and length
dataset as long as the parameters in the configuration file are
modified accordingly. This has the potential to open many new
doors in this field of study and mainly to reduce the human
time required when designing AE topologies. In the future,
we hope to apply our method to many more industry-specific
datasets and a much more computationally powerful computer
system, where we would like to run experiments comparing
current domain methods to our ANAD.
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