
Proceedings
of the 2019
6th Student 
Computer 
Science 
Research 
Conference

 University of Primorska Press

St
uC

oS
R

eC



StuCoSReC
Proceedings of the 2019 6th Student 
Computer Science Research Conference

Edited by
Iztok Fister Jr., Andrej Brodnik, Matjaž Krnc 
and Iztok Fister

Reviewers and Programme Committee
Andrej Brodnik, Chair ■ University of Primorska, Slovenia
Iztok Fister, Chair ■ University of Maribor, Slovenia
Iztok Fister Jr., Chair ■ University of Maribor, Slovenia
Matjaž Krnc, Chair ■ University of Primorska, Slovenia
Nikolaj Zimic, Chair ■ University of Ljubljana, Slovenia
Amina Alić ■ University of Maribor, Slovenia
Klemen Berkovič ■ University of Maribor, Slovenia
Zoran Bosnić ■ University of Ljubljana, Slovenia
Borko Bošković ■ University of Maribor, Slovenia
Janez Brest ■ University of Maribor, Slovenia
Lucija Brezočnik ■ University of Maribor, Slovenia
Patricio Bulić ■ University of Ljubljana, Slovenia
Mojca Ciglarič ■ University of Ljubljana, Slovenia
Jani Dugonik ■ University of Maribor, Slovenia
Matjaž Gams ■ Jozef Stefan Institute, Slovenia
Mario Gorenjak ■ University of Maribor, Slovenia
Andres Iglesias ■ Universidad de Cantabria, Spain
Sašo Karakatič ■ University of Maribor, Slovenia
Branko Kavšek ■ University of Primorska, Slovenia
Štefan Kohek ■ University of Maribor, Slovenia
Miklos Kresz ■ University of Szeged, Hungary
Niko Lukač ■ University of Maribor, Slovenia
Marjan Mernik ■ University of Maribor, Slovenia
Uroš Mlakar ■ University of Maribor, Slovenia
Eneko Osaba ■ University of Deusto, Spain
Vili Podgorelec ■ University of Maribor, Slovenia
Jan Popič ■ University of Maribor, Slovenia
Peter Rogelj ■ University of Primorska, Slovenia
Damjan Vavpotič ■ University of Ljubljana, Slovenia
Grega Vrbančič ■ University of Maribor, Slovenia
Borut Žalik ■ University of Maribor, Slovenia

Published by
University of Primorska Press
Titov trg 4, si-6000 Koper

Editor-in-Chief
Jonatan Vinkler
Managing Editor
Alen Ježovnik

Koper, 2019

isBN 978-961-7055-82-5 (pdf)
www.hippocampus.si/isBN/978-961-7055-82-5.pdf
isBN 978-961-7055-83-2 (html)
www.hippocampus.si/isBN/978-961-7055-83-2/index.html 
DOI: https://doi.org/10.26493/978-961-7055-82-5

© University of Primorska Press

Preface

Computer science is now among the most popular study 
programmes worldwide. We live in a digital age where 
most industries rely on data and software programmes. 
From transport infrastructure to public health systems, 
banking and communications, computer science is 
everywhere. Technology has made the world better, 
faster, and more connected. However, it is easy to miss 
an important component of this exciting success story.

Such development was made possible thanks to the 
brilliant minds of IT graduates, who took their passion 
for technology and used it to create ground breaking 
gadgets and computer programmes. Here in Slovenia, 
the three public universities share these values and 
invest heavily in their computer science students. These 
efforts facilitate collaboration among our departments, 
resulting in joint events such as this StuCoSRec student 
conference.

We are proud that, over the past five years, these 
Student Computer Science Research Conferences 
have grown in several ways. In this 6th installment, we 
received 24 full-paper submissions and one abstract 
submission. Among these, 21 papers were accepted 
to these proceedings, and 22 talks are scheduled to 
be presented during the conference, in three parallel 
sessions. The continued internationalization of our 
departments is also reflected with the authors of ten 
full-paper submissions originating from outside of 
Slovenia.

The conference is dedicated to graduate and 
undergraduate students of computer science and is 
therefore free of charge. We gratefully acknowledge 
the support of the Faculty of Mathematics, Natural 
Sciences and Information Technologies (University of 
Primorska).

Matjaž Krnc 

Kataložni zapis o publikaciji (CIP) pripravili 
v Narodni in univerzitetni knjižnici v Ljubljani
COBISS.SI-ID=302029568
ISBN 978-961-7055-82-5 (pdf)
ISBN 978-961-7055-83-2 (html)



StuCoSReC Proceedings of the 2019 6th Student Computer Science Research Conference
Koper, Slovenia, 10 October III

Contents

Preface II

Papers

LSTM Network for Stock Trading 
◆ Dušan Fister and Timotej Jagrič 5–8

Defining computational thinking framework for introductory programming 
in higher education 
◆ Boštjan Bubnič

9–12

Passive Floating Probe
◆ Michele Perrone, Urban Knupleš, Mitja Žalik, Vid Keršič and Tadej Šinko 13–17

Efficient Collision Detection for Path Planning for Industrial Robots 
◆ László Zahorán and András Kovács 19–22

Sensitivity analysis for p-median problems 
◆ Ágnes Vida and Boglárka G.-Tóth 23–26

A two-stage heuristic for the university course timetabling problem 
◆ Máté Pintér and Balázs Dávid 27–30

Detection of different shapes and materials by glasses for blind and visually impaired 
◆ Urban Košale, Pia Žnidaršič and Kristjan Stopar 31–34

Comparison of clustering optimization for classification with PSO algorithms 
◆ Klemen Berkovič, Uroš Mlakar, Borko Bošković, Iztok Fister and Janez Brest 35–42

Hierarchical Routing Algorithm for Industrial Mobile Robots by Signal Temporal Logic 
Specifications 
◆ Balázs Csutak, Tamás Péni and Gábor Szederkényi

43–47

Decolorization of Digital Pathology Images: A Comparative Study 
◆ Krishna Gopal Dhal, Swarnajit Ray, Arunita Das, Iztok Fister Jr. and Sanjoy Das 49–52

Solving multi-depot vehicle routing problem with particle swarm optimization 
◆ Matic Pintarič and Sašo Karakatič 53–56

Recognizing the subject exposure from the EEG signals with artificial neural networks 
◆ Sašo Pavlič and Sašo Karakatič 57–60

Transfer Learning Tuning Utilizing Grey Wolf Optimizer for Identification 
of Brain Hemorrhage from Head CT Images 
◆ Grega Vrbančič, Milan Zorman and Vili Podgorelec

61–66

System for remote configuration and over the air updates in restricted environments 
◆ Marko Zabreznik and Jernej Kranjec 67–70

Covering problems and Influence maximization 
◆ Gyöngyvér Vass and Boglárka G.-Tóth 71–74



StuCoSReC Proceedings of the 2019 6th Student Computer Science Research Conference
Koper, Slovenia, 10 October IV

Strong deep learning baseline for single lead ECG processing 
◆ Csaba Botos, Tamás Hakkel, Márton Áron Goda, István Z. Reguly and András Horváth 75–83

Primerjava osnovnega algoritma po vzoru obnašanja netopirjev 
in njegove hibridne različice HBA 
◆ Žan Grajfoner and Lucija Brezočnik

85–90

Nadgradnja algoritma FLORS za besednovrstno označevanje slovenskih besedil 
◆ Domen Kavran, Robi Novak, Jan Banko, Rok Potočnik, Luka Pečnik and Borko Bošković 91–99

Analiza igralnih strategij v iterativni zaporniški dilemi 
◆ Klemen Kac and Bor Praznik 101–106

Napovedovanje nogometnega zmagovalca z rekurentno nevronsko mrežo LSTM 
◆ Nejc Planer and Mladen Borovič 107–110

Izboljšanje zaznave sovražnega in zlonamernega govora s pomočjo slovarja besed 
◆ Sašo Kolac, Aljaž Soderžnik, Simon Slemenšek and Borko Bošković 111–114

Investigating patterns using cellular automata 
◆ László Tóth 115



Online Long Short-Term Memory Network for Stock
Trading

Dušan Fister
Univerza v Mariboru, Ekonomsko-poslovna

fakulteta,
Razlagova 14,

SI-2000 Maribor, Slovenia
dusan.fister1@um.si

Timotej Jagrič
Univerza v Mariboru, Ekonomsko-poslovna

fakulteta,
Razlagova 14,

SI-2000 Maribor, Slovenia
timotej.jagric@um.si

ABSTRACT
Economic theory teaches that it is impossible to earn higher-
than-normal returns on trading stocks, and that the only
chance to earn higher profits is to take higher risk. Often,
the practice reveals that higher-than-normal stock returns
may indeed be earned, which is a hypothesis we would like
to empirically test. In this way, we design so-called mechan-
ical trading system, which focuses on the technical analysis
of past stock data, and perform daily trading for the Ger-
man stock from period 2010-2019. Long short-term memory
network is taken as a basis of the mechanical trading sys-
tem. Obtained results show that higher-than-normal returns
are easily obtainable, which polemicizes the efficiency of the
observed stock.

Keywords
LSTM networks, mechanical trading system, stock trading

1. INTRODUCTION
Efficient market hypothesis (EMH) states that asset prices
fully reflect all information available [3] and that asset prices
quickly incorporate any new information without delay. Con-
sequently, higher-than-normal returns cannot be achieved
and predictions of future prices cannot be valuable [10].
Stocks strictly follow a random walk (are unpredictable) and
it is impossible to beat the market. Malkiel [10] reports op-
posite opinion, where he states that market inefficiencies and
arbitrage opportunities to earn higher-than-normal returns
indeed exist. A sample of these includes market bubbles,
market crashes and other irrational pricing. Pedersen [12]
even outlines common investment strategies to detect arbi-
trage opportunities. To investigate any market inefficien-
cies for a case study of Germany, we employ a single-stock
automated mechanical trading system (MTS). As a bench-
mark, we choose the stock Daimler AG. We implement the
MTS trading strategy using the long short-term memory
network (LSTM) and compare its performance to the pas-

sive trading strategy. LSTMs are found usable in broad ar-
eas, such as sentence classification [2], trajectory prediction
of autonomous vehicles [9], flood forecasting [8] and malware
detection [15]. Furthermore, LSTM are used in engineering
for estimating remaining useful life of systems [17] and in
medicine for automated diagnosis of arrhythmia [11]. The
structure of the paper is as follows: chapter two outlines
the fundamentals of LSTM networks. Chapter three lists
the information about the dataset and explains methodol-
ogy. Chapter four shows the experiments and results, while
chapter five concludes the paper.

2. LONG SHORT-TERM MEMORY
Long short-term memory networks (LSTMs) are a kind of
artificial neural networks, specifically designed to deal with
sequential and dynamic data [6]. LSTMs are recurrent neu-
ral networks (RNN) with an agile structure that attempt
to remember long-term dependencies and prevent both the
usual RNN problems: exploding and vanishing gradients.The
benefit of the LSTM lies in a memory cell, i.e. central el-
ement of the network, and the three kinds of gates which
control the flow of information. Memory cell accumulates
the internal state by supplying the sequences of data. Each
gates constitutes of weights, which are adapted during the
learning process [5]. Figure 1 shows the structure of the
usual LSTM. The common LSTM structure consists of the

sigmoid sigmoid

tanh

sigmoid

x

x x

tanh

+

FORGET
GATE

INPUT
GATE

OUTPUT
GATE

MEMORY CELL

Figure 1: LSTM structure.

forget, input and output gate. Forget gate, which is a sim-
ple sigmoid function, is used to filtrate past information to
be brought into following time step. Input gate, which is
a combination of sigmoid and tanh functions, is used to
enter new information into the memory cell. Output gate,

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research ConferenceStuCoSReC 55DOI: https://doi.org/10.26493/978-961-7055-82-5.5-8



which is also a combination of sigmoid and tanh function,
is used to output relevant information from the memory
cell and transfer the information into following time step.
LSTM layer can be single, or stacked into multi-layered net-
works. Figure 1 shows the individual LSTM layer, which
is sufficient for many cases. For more comprehensive (e.g.
non-stationary) data, [1] suggests the use of stacked LSTM
network, e.g. two individual LSTM layers composed into a
single network.

Table 1: Dataset variables, used during trading.

Explanatory variables Vars.

1. Stock and market data:
open, close, high, low, adj. close, volume 12

2. Date data:
month, day, day of week, days to next

5
trading day, days from previous trading day

3. Technical indicators:
RET: n = {1, 2, 3, ..., 10}-day period 10
DIFF: n = {1, 2}-day period 2
DIFF RET: n = {1, 2}-day period 2
RSI: 14-day period RSI 1
MACD: 12-day short, 26-day long

1
and 9-day signal period

INCL: n = {5, 10, 15, 20}-day period 4
INCL CHG: 4
REL DIFF: 2

Sum 43

3. MECHANICAL TRADING SYSTEM
LSTMs can be applied to diverse problems and domains of
sequential data. In this paper, we apply the LSTM for clas-
sification problem, which drives the MTS. MTS follows the
underlying daily stock prices and outputs the three common
trading decisions respectively: buy, hold and sell. Accord-
ing to the trading decisions, stocks are bought, sold or held
in the portfolio. Since the movement of stock prices affects
the portfolio value, it is desired that the current and final
value of portfolio (and thus profit), is maximized. For imple-
mentation of MTS, we assume (1) perfect liquidity of stocks
and (2) close price trading. Perfect liquidity means that
stocks can be sold or bought instantly. Close price trading
means that stocks are traded at the close price, just after
the market close. The MTS trades with stocks daily. Here,
only the relevant historic daily trading data is supplied. No
additional information, such as company’s financial reports
and other statements, are taken into account, since these
are available for longer time periods only, e.g. a quarter
of a year. The LSTM is thus able to extract daily trad-
ing patterns and identify trading opportunities that arise by
behavioural acting of ordinary investors. These are often
psychologically-affected and subjected to phenomena, such
as panicking and following the herd instinct. Those two
largely drive the price of a stock and forecasting them may
be beneficial to earn higher-than-normal returns.

3.1 Dataset
Daimler AG is a German automotive company, with approx-
imately 50 B Eur of market capitalization, 1.07 B of shares
outstanding and almost 4.6 M of trades daily, at the time of

writing. It is one of the blue-chip stocks, listed in the index
of 30 most prominent German companies DAX30. The stock
data is obtained from Yahoo Finance website1, during the
period from 4 Jan 2010 - 7 Jun 2019 on a daily basis. Fol-
lowing data is downloaded: the highest daily price (High),
the lowest daily price (Low), open price (Open), close price
(Close), daily volume (V olume) and adjusted close price
(AdjClose). The data is downloaded for the Daimler AG
stock and DAX30 industrial index. Composing those two
into a dataset, several other variables are derived from. In
this way, a more expanded, detailed and concrete dataset is
built. Table 1 lists the dataset variables. There are 12 stock
and market data variables, 5 variables which symbolize the
date and 8 technical indicators. 10 stock returns (RET) are
extracted, ranging from 1-day returns to 10-day returns. 2
stock differences (DIFF) are obtained as differences between
today and yesterday’s price and today’s price and price 2
days ago. Difference of returns (DIFF RET) is calculated
by subtracting the stock returns. Relative strength indicator
(RSI) and moving average convergence divergence (MACD)
are common trading indicators. Inclination (INCL) is ob-
tained by calculating the regression coefficient over n pe-
riods of stock prices. Inclination change (INCL CHG) is
calculated from the 5-day inclination and the 5-day inclina-
tion five days ago and current 5-day inclination to current
10-day, 15-day and 20-day inclinations. Relative differences
(REL DIFF) are obtained as ratio between close and open
prices, and high and low prices. Response variable (y) is
generated by deriving the 1-day stock returns. If the under-
lying stock return overcomes the fixed threshold, set at 0.01
(1%) in our case, the response variable is marked as Buy.
Furthermore, if the stock return exceeds the negative value
of threshold, it is marked as Sell. If it does not exceed any
of the two, it is marked as Hold. These signals are encoded
in binary form to fulfill the requirements of the dense layer.

3.2 Methodology
The work with LSTM is divided into two samples, i.e. train-
ing and prediction, since LSTM is a modeling tool and thus
needs some data to be trained from. Initially, the train-
ing sample of the LSTM is used for offline training and is
intended to capture general long-term stock dependencies.
It is performed only once. Additionally, an online learning
and regular re-train of the LSTM is applicable to update the
pre-built LSTM model with the latest information, i.e. lat-
est stock price movements. The procedure of training and
prediction samples is explained in Algorithm 1. First the
stock data (dataset) is normalized in range(0,1) and batch
size b is defined. Dataset is split into two samples. In-
sample is used for the offline training and after, the memory
cell is reset. The LSTM is used to predict the in-sample
and establish a stable memory cell. Predictions on the in-
sample are biased and are not used for real trading. After
the internal state is established, the out-of-sample is used for
prediction. Since stacked LSTMs require the batch size to
be divisible from the number of samples, the first b-samples
from out-of-sample are only used for prediction each time.
Its solutions are appended into a vector, to be evaluated
later. The iterative online training comes next, where each
time, the b-samples are transferred from out-of-sample to
in-sample. By expanding the in-sample for b-samples, out-

1https://finance.yahoo.com

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

6



Algorithm 1 Algorithm of online LSTM training.

1: procedure Online LSTM training
2: NORMALIZE(dataset);
3: DEFINE b . define batch size
4: in-sample,out-of-sample=SPLIT(dataset);
5: for no. of epochs do . number of epochs
6: model← TRAIN(in-sample); . offline training
7: end for
8: RESET STATE(model) . reset memory cell state
9: PREDICT(in-sample) . establish memory cell state

10: decision← PREDICT(out-of-sample[0:b])
11: while out-of-sample do
12: in-sample=APPEND(out-of-sample[0:b])
13: out-of-sample=REMOVE(out-of-sample[0:b])
14: RESET STATE(model)
15: for no. of epochs / 100 do
16: model← RETRAIN(in-sample); . online

training
17: end for
18: RESET STATE(model)
19: PREDICT(in-sample)
20: decision← PREDICT(out-of-sample[0:b]) .

append first b predictions
21: end while
22: results← BACKTEST(decision)
23: INTERPRET RESULTS
24: end procedure

of-sample is simultaneously reduced for the same amount.
The LSTM pre-built model is then retrained using the ex-
panded in-sample, which practically means that b trading
days need to (physically) pass prior any LSTM online re-
train occurs. For retraining, a lower number of the number
of epochs is taken. The memory cell is next reset and the
expanded in-sample predicted to establish internal state of
the memory cell. Next, the first b-samples of the remaining
out-of-sample are predicted and its solutions appended in
the decision vector.

The quality of the MTS trading strategy, i.e. decision vec-
tor, is evaluated using the back-testing approach. By back-
testing, the MTS is put into history and is given an ini-
tial amount of cash, which is used to buy stocks during the
trading. MTS follows underlying movement of stock prices
day-by-day and trades with stocks in a continual trading
process. If the LSTM supposes that tomorrow’s close price
of a stock will increase over the preset threshold, it gives
the signal to buy. Alternatively, if the price is expected to
drop below the threshold, the MTS gives the signal to sell.
Once the signal to buy (buy) is classified, maximum number
of stocks, reduced for transaction costs, are bought for the
current amount of money. Similarly, when the signal to sell
(sell) is classified, all the stocks are sold and the amount
is lowered for transaction costs. No information about any
forthcoming stock prices is specified at any time.

4. EXPERIMENTS AND RESULTS
The goal of the experimental work is to show that auto-
mated MTS using the LSTM trading strategy can be used
to catch excess profits (higher-than-normal returns) on trad-
ing stocks. Daimler AG stock is taken as a benchmark. Its
dataset is split 70%-30%, where 70% goes to in-sample and

the rest 30% to out-of-sample. Framework is implemented
in the Python programming language, using the Keras Deep
Learning Library2. A two layered stacked LSTM and Adam
optimizer are used [7]. Figure 2 outlines the structure of the
used network, while the table 2 the algorithm setup. Trad-
ing costs of 1% are adopted, according to literature [13, 14,
16], which come into play when buying or selling stocks.

LSTM LSTM

DENSE
DATASET

in-sample

out-of-
sample

YAHOO
Finance

Buy

Hold

Sell

y

Figure 2: Structure of the network.

Experiments are conducted using the out-of-sample back-
testing. The higher the final portfolio value, the better the
trading strategy. Results are reported graphically. Figure 3
presents the flow of trading, where the x-axis shows the trad-
ing days and the y-axis shows the portfolio value. Dashed
line equates to passive trading strategy, while the solid line
to MTS using the LSTM trading strategy. The greater the
difference of solid line, compared to dashed line, the higher
the excess profit. Passive trading strategy implements a
single transaction and single transaction costs. From the
day 450, passive strategy starts losing portfolio value below
the initial amount of cash. In the end it scores 25.28% of
loss. Although the LSTM on the other hand implements
6 transactions and thus increases transaction costs signifi-
cantly, it behaves much more beneficially. When the MTS
detects that the stock price is about to rise, it buys stocks,
and when detects the price to fall, it sells them. The LSTM
scores the 16.02% of profit and thus overcomes the passive
trading strategy for more than 55%.

Table 2: Algorithm setup.

Parameter Value

Batch size b 15
No. of epochs 1000
Learning rate 0.001

Optimizer Adam
No. of units LSTM1 10
No. of units LSTM2 10

5. CONCLUSIONS
Efficient market hypothesis states that technical analysis is
worthless for predicting the stock market performance. To
test the validity of this hypothesis, we have applied the
stacked long short-term memory network for trading the
German stock Daimler AG from year 2010 to 2019. Back-
testing approach was used to evaluate the quality of trad-
ing decisions. Implemented trading strategy significantly
outperformed the passive trading strategy and found many
arbitrage opportunities and other inefficiencies. Obtained
results coincide with the results from a more detailed study
in [4]. Results show that it is possible to generate higher-
than-normal returns by relying on the technical analysis
2https://keras.io

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

7



0 100 200 300 400 500 600 700
Trading days

0

2000

4000

6000

8000

10000

12000

14000

P
or

tf
ol

io
va

lu
e

LSTM

PASSIVE

0

100

200

300

400

500

600

N
u

m
b

er
of

st
oc

ks

Figure 3: Comparison between the automated MTS with LSTM trading strategy and passive trading strategy.

only. We conclude that either stock is inefficient, or the
technical analysis is indeed a very efficient tool. We agree
that arbitrage opportunities are partly conditional to the
level of volatility of stock prices, since the higher the volatil-
ity, the higher the arbitrage opportunities. Volatility to its
nature comes with constant reception of new information –
the EMH states that stock prices quickly adjust to new infor-
mation. If new information is constantly received, volatility
is necessarily implied as well. For future work, we would like
to implement a multi-stock MTS with LSTMs. Instead of
single-stock returns, we would like to examine the portfolio
returns. For example, German stocks in stock index DAX30
would be suitable for such an analysis.

6. REFERENCES
[1] J. Brownlee. Long Short-term Memory Networks with

Python: Develop Sequence Prediction Models with
Deep Learning. Jason Brownlee, 2017.

[2] Z. Ding, R. Xia, J. Yu, X. Li, and J. Yang. Densely
connected bidirectional lstm with applications to
sentence classification. In CCF International
Conference on Natural Language Processing and
Chinese Computing, pages 278–287. Springer, 2018.

[3] E. F. Fama. Efficient capital markets: A review of
theory and empirical work. The journal of Finance,
25(2):383–417, 1970.

[4] D. Fister, J. Mun, V. Jagrič, and T. Jagrič. Deep
learning for stock market trading: A superior trading
strategy? Neural Network World, 29(3):151–171, 2019.

[5] F. A. Gers, J. Schmidhuber, and F. Cummins.
Learning to forget: Continual prediction with lstm.
1999.

[6] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[7] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] X.-H. Le, H. V. Ho, G. Lee, and S. Jung. Application
of long short-term memory (lstm) neural network for

flood forecasting. Water, 11(7):1387, 2019.

[9] L. Lin, S. Gong, T. Li, and S. Peeta. Deep
learning-based human-driven vehicle trajectory
prediction and its application for platoon control of
connected and autonomous vehicles. In The
Autonomous Vehicles Symposium, volume 2018, 2018.

[10] B. G. Malkiel. The efficient market hypothesis and its
critics. Journal of economic perspectives, 17(1):59–82,
2003.

[11] S. L. Oh, E. Y. Ng, R. San Tan, and U. R. Acharya.
Automated diagnosis of arrhythmia using combination
of cnn and lstm techniques with variable length heart
beats. Computers in biology and medicine,
102:278–287, 2018.

[12] L. H. Pedersen. Efficiently inefficient: how smart
money invests and market prices are determined.
Princeton University Press, 2015.

[13] H. Shin and S. Y. Sohn. Segmentation of stock trading
customers according to potential value. Expert systems
with applications, 27(1):27–33, 2004.

[14] V. Šonje, D. Alajbeg, and Z. Bubaš. Efficient market
hypothesis: is the croatian stock market as (in)
efficient as the us market. Financial theory and
practice, 35(3):301–326, 2011.

[15] R. Vinayakumar, K. Soman, P. Poornachandran, and
S. Sachin Kumar. Detecting android malware using
long short-term memory (lstm). Journal of Intelligent
& Fuzzy Systems, 34(3):1277–1288, 2018.

[16] B. W. Weber. Screen-based trading in futures
markets: recent developments and research
propositions. In Proceedings of the 32nd Annual
Hawaii International Conference on Systems Sciences.
1999. HICSS-32. Abstracts and CD-ROM of Full
Papers, pages 10–pp. IEEE, 1999.

[17] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu.
Remaining useful life estimation of engineered systems
using vanilla lstm neural networks. Neurocomputing,
275:167–179, 2018.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

8



Defining computational thinking framework for
introductory programming in higher education

Boštjan Bubnič
University of Maribor

Faculty of Electrical Engineering and Computer Science
bostjan.bubnic@student.um.si

ABSTRACT
Computational thinking (CT) is gaining recognition as an
important skill set for the general problem solving. Altho-
ugh CT has its origin in computer science and program-
ming, there is a great interest of researchers and educators
to explore how to include CT in all scientific and engineering
disciplines, as well as in kindergarten to 12th grade educa-
tion (K-12) curriculum. To determine the effective methods
for teaching, learning and assessing CT, a definition and its
scope is needed. To date there is no consensus in terms of
formal CT definition as well as the definitive or necessary
components of CT. However, our study builds upon the con-
sensus that multiple skills are involved in CT. The result of
this study is the CT framework proposal to be used in in-
troductory programming courses in higher education. The
framework is an intersection of previous research that has
identified basic, domain independent components of CT and
domain specific programming practices. We hope that the
framework will encourage the future research on teaching
and assessing CT in the higher education.

Keywords
Computetional thinking, Framework, Introductory program-
ming, Higher education

1. INTRODUCTION
Computational thinking (CT) has a long history within com-
puter science (CS). It was known under the terms ”algori-
thmizing”and ”algorithmic thinking” in the 1950s and 1960s,
when it was considered as a mental practice for problem
conceptualization, for inventing formalisms and concepts to
solve problems [22]. In the educational context, the CT
phrase was introduced by Seymour Papert in the 1980s,
when he was teaching Logo, an educational programming
language, to improve students’s ability to think procedurally
[12]. Recently, the term was reintroduced and popularized
by Wing who described CT as a way of solving problems,
designing systems, and understanding human behavior by

drawing on the concepts fundamental to CS [25]. She also
argued that computational thinking is a fundamental skill
for everyone, not just for the computer scientists. The shift
from the CS to the general problem solving domain increased
attention among researchers, educators and practitioners in
exploring how to include CT across the educational spec-
trum and in everyday life. However, the broad spectrum of
perspectives on CT also presents challenges to teaching, le-
arning and assessing CT. The diverse spectrum of concepts,
skills and practices under the umbrella of CT resulted in
the lack of clarity as to what computational thinking should
be. In this regard, to date there is no consensus concerning
the definition and the scope of CT, nor there is a consensus
about the definitive or necessary components that consti-
tute CT. Nevertheless, it is generally agreed that multiple
skills are involved in CT [18]. Moreover, researchers have
begun to characterize computational thinking by means of
CT taxonomies and frameworks, where particular concepts
and practices were observed.

This work expanded upon our previous work where general,
domain independent components of CT were identified [4].
Moreover, the aforementioned study motivated this work.
The main contribution of this paper is the definition of com-
putational thinking framework that was sourced from the
general, domain independent CT components. It is inten-
ded to be used in the higher education institutions. We
envision this work to serve as a foundation for designing CT
instruments and course materials to assess and foster com-
putational thinking for CS majors and non-CS majors. The
proposed framework is also aligned with the particular CS
curriculum categories [17].

2. RELATED WORK
When computational thinking was reintroduced by Wing
[25], abstraction and decomposition were the fundamental
components. The initial set of components were later refi-
ned with automation. After initial component conceptuali-
zation, researchers have begun to characterize computatio-
nal thinking by means of CT taxonomies and frameworks.

This section presents a brief description of related work with
the focus on the frameworks and taxonomies that are appli-
cable to higher education with the emphasis on CS domain.
Gouws et al. [7] defined a framework of six distinct skills
and practices that served as the foundation for the asses-
sment design, where the intervention was applied to intro-
ductory computer science course (CS1) students. Billion-

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

9DOI: https://doi.org/10.26493/978-961-7055-82-5.9-12



niere [1] assessed CS1 students’ comprehension within ab-
straction, arrays of objects, and inheritance. The results
of the assessment were categorized into five computational
thinking concepts. Romero et al. [16] proposed a framework
for evaluating CT in creative programming activities. The
intervention was applied to undergraduate students of a ba-
chelor’s degree in elementary school education. Peteranetz
et al. [14] report on fostering computational thinking thro-
ugh computational creativity based on an online course that
was tailored for non-CS majors. Rambally [15] proposed a
framework of CT skills and practices that were integrated
into discrete structures course, which was a required course
for all Information Technology majors. Finally, the two most
cited papers in context of CT frameworks appear to be Bren-
nan and Resnick [3] and Weintrop et al. [24]. Although none
of the papers was aimed for the CT within higher education,
there are studies that build on these particular papers in the
context of higher education.

3. PROPOSED FRAMEWORK
Algorithm, abstraction and decomposition, previously iden-
tified as the uppermost general, domain independent CT
components, served as a starting point for this study. Af-
terwards, each of the CT concepts were further examined
within the computer programming domain. This was a two-
step process. Fundamental programming concepts and prac-
tices were grouped into four categories within the first step.
The initial corpus of computer programming concepts was
sourced from the results of research conducted by Luxton-
Reilly et al. [10]. Within the literature review they identified
more than sixty different computer programming concepts
that were grouped into twelve master categories. To extract
only concepts relevant to algorithm, abstraction and decom-
position, each particular concept from [10] was further ana-
lysed with the relevant sections of the Computer Science
Curricula 2013 [17] and chapters concerning the software
engineering [2]. The aims of the second step were the in-
tersection points between particular fundamental computer
programming concepts and the CT concepts. Computer Sci-
ence Curricula 2013 [17] and the dissertation reporting on
the process of developing validated CS assessment [23] were
the primary sources for the aligning process.

The proposed framework of computational thinking for in-
troductory programming in higher education (CTF) is pre-
sented in the Table 1. The CTF is envisioned to serve as the
foundation for designing CT instruments and course mate-
rials to assess and foster computational thinking for CS ma-
jors and non-CS majors. The visual representation of the
CTF is represented as a two dimensional grid. The axis of
this framework describes the main components that make up
CT, as well as programming practices that are part of com-
puter programming. Each grid element incorporates com-
puter programming concepts that are aligned with particu-
lar CS curriculum category [17]. We envision each of these
programming concepts to be implemented as programming
artefacts within the specific programming methodology or
as a pseudocode.

Algorithm, abstraction and decomposition are the relevant,
domain independent CT components that were identified in
our previous study [4]. It should be noted that thirty-six
different CT concepts, skills and practices were identified

within our previous study, while only algorithm, abstrac-
tion and decomposition appeared to be relevant, domain in-
dependent CT components. The relevance was evaluated
according to the frequency identified in a literature review.
Within our CTF, they are represented on the vertical axis.
Algorithms can be generally defined as procedural building
blocks of a computer programming, of a human thought and
of a general problem solving [4]. In the theoretical computer
science, an algorithm is defined as a procedure that satisfies
the criteria of finiteness, input, output, effectiveness, and
definiteness [8]. However, in our framework an algorithm
is associated with constructing an algorithmic solution to a
problem to be solved. In educational context, this practice
is referred as algorithmic thinking.
Abstraction can generally be characterized as the conceptual
process of eliminating specificity by ignoring certain featu-
res. Abstraction is closely related to the modeling concept
and to the concept of generalization. The model is abstrac-
tion of a real or a conceptual complex system. Abstraction
levels and the hierarchy of abstraction are important aspects
in the models design practice. In software engineering, ab-
straction involves the extraction of properties of an object
according to some focus: only those properties are selected
which are relevant with respect to the focus [5]. In com-
puter programming abstraction practices can be observed
within two categories: by mechanisms or by programming
constructs. Abstraction by specification and abstraction by
parametrization are the two mechanisms that make abstrac-
tions explicit and tangible. Furthermore, these two powerful
methods for constructing computer programs contribute to
the definition of the following important programming con-
structs: procedural abstraction, data abstraction, iteration
abstraction and type hierarchy.
Decomposition deals with breaking down a problem into
smaller, more manageable components where each compo-
nent can be managed independently. Levels of abstraction
need to be utilized to successfully decompose a problem into
smaller components. In computer science, distinct variants
of decomposition can be observed. Parnas [13] investiga-
ted hierarchical decomposition in the context of modularity
in order to decompose complex information system into a
number of smaller, manageable modules. Moreover, decom-
position is the crucial part of structured, object-oriented and
functional programming paradigms. Generally, the aim is to
decompose a computer program into modules, which are set
of smaller programs to solve sub problems. Smaller pro-
grams interact with one another in a simple, well defined
way.

As a discipline, computer programming incorporates seve-
ral processes, skills and practices. However, our aim at this
point was to identify computer programming skills and prac-
tices that correlate with particular CT concepts. The pri-
mary source for identifying programming skills and practices
was the Computer Science Curricula’s sections Fundamen-
tal Programming Concepts, Development Methods, Algori-
thms and Design [17]. Furthermore, to observe the broadest
spectrum, software engineering skills and practices were also
included within our study [2], [9]. Finally, problem concep-
tualization, implementation, debugging and evaluation were
included in the framework. They are represented on hori-
zontal axis in the Table 1. We define problem conceptuali-
zation as an algorithmic solution to the observed problem.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

10



Table 1: Computational thinking framework for introductory programming in higher education

Components of
CT

Problem concep-
tualization

Implementation Debugging Evaluation

Algorithm
• Algorithmic

solution to a
problem

• Diagram or
flowchart

• Algorithmic
notions of flow
control

• Debugging of
algorithmic
solution

• Error detec-
tion strategies

• Code compre-
hension

• Correctness

• Efficiency

• Simplicity

Abstraction

• Abstraction levels

• Abstraction
hierarchy

• Mechanisms of
abstraction

• Programming
constructs

• Error detec-
tion strategies

• Code compre-
hension

• Relevance

• Efficiency

• Simplicity

Decomposition

• Components
identification

• Components
modeling

• Modularization

• Error detec-
tion strategies

• Code compre-
hension

• Correctness

• Simplicity

It is a part of requirements engineering process that assures
the problems are properly defined, understood and framed
in a way that allows algorithmic solution. Domain specific
knowledge is required within the requirement engineering
process [2]. Implementation is a practice of programming
the algorithmic solution within specific programming langu-
age. The programming language constructs principally relay
on the programming methodology that is applied, such as
structured programming, modular programming, abstract
data type programming or object-oriented programming.
Moreover, the algorithmic solution can be implemented as
a pseudocode. Debugging is the process of understanding,
finding and correcting errors. While various error detection
strategies exist, systematic debugging strategy has proven
to be the most effective [26]. To effectively locate and fix
an error within a computer program, code comprehension
skills are required. Donaldson and Cutts [6] proposed seve-
ral activities to develop the code comprehensions skills. The
evaluation process normally involves some identification of
relevant standards of worth, merit or value. Moreover, the
process is also concerned with some investigation of the per-
formance of the evaluands on these standards [19]. Smith
and Cordova [20] propose several traits to be used for com-
puter program evaluation, such as correctness, efficiency and
completeness.

4. DISCUSSION
The motivation for this work arose whilst working on previ-
ous work, where we were identifying general, domain inde-
pendent components of CT [4]. During the literature review,
the paper from Tang et al. [21] reporting on content ana-
lysis of computational thinking research has been examined.

Results within the paper has revealed that higher education
level was the second most frequently investigated category
within CT. Furthermore, computer science was the most fre-
quent subject of research in context of CT [21]. On contrary,
within our previous study we have found only a few studies
investigating on the CT frameworks or taxonomies in higher
education [4]. In this context, our study tried to fill the gap
between CT concepts and computer programming concepts
and practices by proposing the CTF.
The relevancy of the proposed CTF in context of CT is fun-
damentally different from previous studies, because only re-
levant, domain independent components of CT were used as
a starting point of our study. It should be noted that thirty-
six different CT concepts, skills and practices were identified
within our previous study, while only algorithm, abstraction
and decomposition appeared to be the prospects for achie-
ving the relevancy consensus [4]. The primary aim of this
study was the alignment process between these CT concepts
and computer programming concepts. The mapping of the
programming concepts to programming code artifacts is yet
to be the subject of further research. On the contrary, previ-
ous studies that had proposed CT frameworks and taxono-
mies [3], [24] had mainly focused on computer programming
artifacts and mapped them directly to various CT skills and
practices.
Nevertheless, the major result of this work are the CTF grid
elements that incorporate computer programming concepts,
aligned with CS curriculum and their associated CT con-
cepts. In this regard, the CTF is envisioned to serve as the
foundation for teaching and evaluating core CT skills and
practices within computer programming.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

11



5. CONCLUSIONS
The result of this work is a framework proposal for CT in
introductory programming in higher education. The fra-
mework provides a useful starting point for further research.
The future work should be oriented toward implementing
computer programming artefact based on proposed CTF.
The envisioned outcome of further research might be the
CT instrument suited for implicitly assessing CT based on
computer programming tasks within the higher education
level.

Furthermore, the proposed CTF should stimulate further
research in the context of success or failure of novices in in-
troductory programming in higher education, often referred
as “CS1 dropout rate”. The researchers observed that the
dropout rate problem can be divided to the following two
categories: language problem and design problem [11]. If
these categories could be mapped into the computational
thinking context, then the proposed CTF could serve as a
foundation for CT assessment, a potential predictor for the
CS1 dropout rate.

6. REFERENCES
[1] E. Billionniere. Assessing Cognitive Learning of

Analytical Problem Solving. Doctoral dissertation,
Arizona State University, December 2011.

[2] D. Bjørner. Software Engineering 3 - Domains,
Requirements, and Software Design. Springer-Verlag,
Heidelberg, 2006.

[3] K. Brennan and M. Resnick. New frameworks for
studying and assessing the development of
computational thinking. pages 1–25, Vancouver, BC,
Canada, 2012.

[4] B. Bubnic and T. Kosar. Towards a consensus about
computational thinking skills: Identifying agreed
relevant dimensions. Newcastle, UK, 2019.
Proceedings of the 30th Annual Workshop of the
Psychology of Programming Interest Group - PPIG
2019 - submited for publication.

[5] K. Czarnecki. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley Professional;
1 edition, June 2000.

[6] P. Donaldson and Q. Cutts. Flexible low-cost activities
to develop novice code comprehension skills in schools.
pages 1–4, Potsdam, Germany, 2018. ACM New York.

[7] L. Gouws, K. Bradshaw, and P. Wentworth. First year
student performance in a test for computational
thinking. pages 271–277, East London, South Africa,
2013. ACM New York.

[8] D. Knuth. The Art of Computer Programming:
Volume 1: Fundamental Algorithms, Third Edition.
Addison-Wesley, USA, 1997.

[9] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, and
M. Burnett. The state of the art in end-user software
engineering. volume 43, USA, April 2011. ACM New
York.

[10] A. Luxton-Reilly, B. A. Becker, Y. Cao, and
R. McDermott. Developing assessments to determine
mastery of programming fundamentals. pages 47–69,
July 2017.

[11] M. McCracken, V. Almstrum, D. Diaz, and
M. Guzdial. A multi-national, multi-institutional

study of assessment of programming skills of first-year
cs students. volume 33, pages 125–180, USA, 2001.
ACM New York.

[12] S. Papert. Mindstorms: children, computers, and
powerful ideas. Basic Books, Inc, USA, 1980.

[13] D. Parnas. On the criteria to be used in decomposing
systems into modules. volume 15, pages 1053–1058,
USA, 1972. ACM.

[14] M. S. Peteranetz, L.-K. Soh, and E. Ingraham.
Building computational creativity in an online course
for non-majors. pages 442–448, Minneapolis, USA,
2019. ACM New York.

[15] G. Rambally. Integrating computational thinking in
discrete structures. pages 99–119, Switzerland, 2017.
Springer International Publishing AG.

[16] M. Romero, A. Lepage, and B. Lille. Computational
thinking development through creative programming
in higher education. volume 14, pages 1–15, 2017.

[17] M. Sahami, A. Danyluk, S. Fincher, and K. Fisher.
Computer Science Curricula 2013. The Joint Task
Force on Computing Curricula Association for
Computing Machinery (ACM) IEEE Computer
Society, USA, December 2013.

[18] C. Selby and J. Woollard. Refining an understanding
of computational thinking. University of Southampton
Institutional Repository, 2014.

[19] I. Shaw, J. Greene, and M. Mark. The SAGE
Handbook of Evaluation. SAGE Publications Ltd,
USA, 2013.

[20] L. Smith and J. Cordova. Weighted primary trait
analysis for computer program evaluation. pages
14–19. Consortium for Computing Sciences in
Colleges, 2005.

[21] K. Y. Tang, T. L. Chou, and C. C. Tsai. A content
analysis of computational thinking research: An
international publication trends and research typology.
pages 1–11, USA, 2019. Springer Nature.

[22] M. Tedre. The long quest for computational thinking.
pages 120–129. Koli, Finland, Koli Calling ’16
Proceedings of the 16th Koli Calling International
Conference on Computing Education Research,
November 2016.

[23] A. E. Tew. Assessing Fundamental Introductory
Computing Concept Knowledge in a Language
Independent Manner. Doctoral dissertation, Georgia
Institute of Technology, December 2010.

[24] D. Weintrop, E. Beheshti, and M. Horn. Defining
computational thinking for mathematics and science
classrooms. volume 25, pages 127–147, February 2016.

[25] J. Wing. Computational thinking. volume 49, pages
33–35, USA, March 2006. ACM New York.

[26] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging 2nd Edition. Morgan Kaufmann, USA,
June 2009.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

12



Passive Floating Probe

Authors:
∗

Vid Keršič
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Koroška cesta 46, Maribor
vid.kersic@

student.um.si

Urban Knupleš
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Koroška cesta 46, Maribor
urban.knuples@

student.um.si

Michele Perrone
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Koroška cesta 46, Maribor
michele.perrone@

student.um.si

Tadej Šinko
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Koroška cesta 46, Maribor
tadej.sinko@
student.um.si

Mitja Žalik
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Koroška cesta 46, Maribor
mitja.zalik@
student.um.si

ABSTRACT
This paper illustrates a student project design of an au-
tonomous passive floating probe, which gathers data from
its on-board sensors. The data are subsequently transmit-
ted via the Iridium satellite network to a dedicated server
which then displays the information on the web. Once as-
sembled, the probe is planned to be deployed into the At-
lantic Ocean. The main features of the probe are a solar
panel with a rechargeable battery, a GPS module, an Irid-
ium satellite modem, a vast set of sensors and an ARM-
based microcontroller running a custom firmware based on
FreeRTOS.

Keywords
Remote sensing, data gathering, real-time systems

1. INTRODUCTION
Remote sensing and data retrieval is a challenging task be-
cause physical access to the equipment is limited or impos-
sible; more so, if executed in a harsh environment such as
the oceans. Operating in such an enviroment brings ad-
ditional challenges concerning protection from water, salt
corrosion, plaque, or waste build-up. Furthermore, unpre-
dictable weather can affect the energy autonomy of the de-

∗Listed in alphabetical order

vice or the accuracy of sensor data. To overcome these prob-
lems, we propose a design for a passive floating probe, which
is accessible due to its consumer-available components.

The proposed design follows a modular architecture, which
allows faster prototyping and more advanced future itera-
tions based on this outline.

The main difference between a passive and an active floating
probe is in the way it interacts with its surrounding environ-
ment. A passive probe only listens and gather information
through its sensors and move along with the ocean currents,
while an active probe is equipped with a propulsion system
that would allow it to change its course by itself based on
sensor data and parameters or remotely by an operator.

The goal of this project is the acquisition of real-world mea-
surements for analysis and distribution. A dedicated website
[1] is planned to show project progress, visualize received
data once deployed and enable distribution of collected data
to interested parties.

2. RELATED WORK
Before discussing the proposed design, this paper outlines
a handful of projects which had been the primary source
of inspiration for the authors. The main inspiration comes
from the Maker Buoy project [2]. Its features are a modular
building design powered by solar energy, communication via
the Iridium satellite network and the use of a floating exte-
rior design, which is the basis of this paper’s proposed design
(discussed in Sec. 3). A project called OMNI (Ocean Moni-
toring Network Initiative) uses a similar hardware approach
to the Maker Buoy [3].

The ZL1SIX Ocean Floater is a floating buoy powered by
a battery pack which uses an Amateur radio transmitter to

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

13DOI: https://doi.org/10.26493/978-961-7055-82-5.13-17



transmit data on a 10 MHz Amateur Radio band [4].

The international project Argo is an initiative that uses
thousands of battery-powered floats around the world to
measure the temperature, salinity, and velocity of the ocean
currents. The floats collect data by staying submerged un-
derwater and transmit data by coming up to the surface
and sending it via a satellite antenna. As of this writing,
the project has 3869 floats active across all the oceans [5].

The main difference between the outlined design and other
similar projects is the presence of a Geiger counter, a gas
sensor, a microphone 1, a camera 2, and the use of a more ca-
pable additional microcomputer system in the form of Rasp-
berry Pi for processing extensive data and ease of develop-
ment of such processing software.

3. PROPOSED DESIGN
This section outlines the design of the probe, the software,
and the communication between them. Because the pro-
posed design is not necessarily final, minor changes can hap-
pen to individual modules while components are sourced.

3.1 Hardware design
For its operation, the probe must accomplish different tasks.
Modules that contribute to the same task are classified into
a subsystem. All proposed subsystems are shown in Fig. 1.
Modules inside these subsystems will be presented later.

The core of the probe will be a SensiBLE SIMBA-PRO
development board. Besides various sensors, which are in-
cluded in the inner sensors subsystem, it will feature an
STM32L476xx microcontroller with an ARM Cortex M-4 m
processor. The microcontroller will retrieve data from the
sensors and send them to the data storage subsystem. The
most critical data will be sent to our server daily using the
communication subsystem. When the system has access to
enough power, advanced operations, such as image capture,
sound recording, and advanced data processing will be exe-
cuted on an external Raspberry Pi module (which is part of
the image capture and processing subsystem).

The data storage subsystem shown in Fig. 2 consists of a
micro SD card that will store the raw collected data and an
adapter for the storage device. Since satellite communica-
tion is expensive, not all data will be sent to the server (e.g.,
only average or extreme measurements during the day). Nev-
ertheless, every measurement will be saved to the data stor-
age device. This way, if the probe is ever recovered, much
more data could be analyzed. Even with low chances for
recovery event, it was decided to include this system due to
its low cost.

The inner sensors subsystem shown in Fig. 3 consists of the
sensors which operate from inside the probe. Some of them
gather engineering information about the environment in-
side the casing and can, therefore, reveal some problems
with the probe (e.g., increased temperature of the proces-
sors, change in inner pressure or humidity which could in-

1possible detection of nearby ships or wildlife for imaging
purpuses
2in order to visually detect plastic debris

Passive Floating Probe

Microcontroller

STM32L476xx

image capture

and processing

communication

subsystem

inner sensors
energy

subsystem

Case

GSI Gear Box (Medium)

1554U2GYCL 

hatch with

outer sensors

data storage

subsystem

Figure 1: Subsystems are shown in rectangles. The
microcontroller synchronizes the work of all the sen-
sors. The case is not part of any subsystem, since it
is a passive element and therefore not controlled by
the microcontroller.

Data storage

subsystem

Micro SD card adapter

MicroSD card

breakout board+

Data storage

micro SDHC 16GB 

KINGSTON

Figure 2: Modules in the data subsystem

dicate that the watertight case is damaged). Other sensors
can detect and measure outside sources (GPS signal, Beta
and Gamma radioactive rays, sound, vibration, and light –
since the case is transparent).

The outer sensor subsystem shown in Fig. 4 consists of sen-
sors that cannot perceive outside environmental changes from
the interior of the airtight probe. As such they are places

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

14



Satellite internet modem

IRIDIUM module

RockBLOCK 9603

Communication 

subsystem

Figure 3: Modules in the communication subsystem

compute module

STM32F103C8T6 

Temperature, humidity

and pressure sensor

BME680

servomotor

Water temperature

sensor

Waterproof DS18B20

TVOC and eCO2

sensor

SGP30

hatch

CO and NO2

sensor

MICS-4514

Ammonia sensor

MICS-5914

Ozone sensor

MHM400-01

Outer sensors

Figure 4: Modules in the outer sensors subsystem

outside of the probe casing. To protect the sensors, when
they are not in use, an additional standalone module with a
hatch will be used. Connection to the probe will be through
waterproof connectors. The primary purpose of the outer
sensors is the detection of air pollution.

The image capture and processing system shown in Fig. 5 wil
contain a processing unit (a Raspberry Pi 4) separated from
the microcontroller, which is capable of various image pro-
cessing methods (e.g., pattern recognition, image compres-
sion). Since running the processing unit uses more power,
it will be working only in short time intervals in order to
process and transfer the needed data to the main microcon-

Image processing unit

RPI4-MODBP-2GB

Camera

RPI4-MODBP-2GB

360° camera lense 

assembly

Kogeto DOT360

Data storage

micro SDHC 16GB 

KINGSTON

Image capture

and processing

Figure 5: Modules in the image processing subsys-
tem

troller. For capturing an image, the module will also feature
a camera and 360◦ lens assembly, which makes it possible to
take panoramic photos.

3.2 Firmware design
The software on the probe is separated into three standalone
modules. Their physical execution flow and physical loca-
tion in microcontroller flash is shown in Fig. 6. This design
will enable data gathering, over the air updates and possible
recovery of essential functions in the event of an unforeseen
error in programming or damage to the microcontroller flash.

Bootloader

Firmware

Firmware partitioned 

into blocks 

for easier update

Can

reboot
Boot after 

off or after 

flash

Boot if

errorFailsafe firmware

Figure 6: The outline of the firmware.

The bootloader module will be responsible for deciding and
booting the appropriate firmware. This feature will enable
the probe to turn itself off due to the lack of power. An ad-
ditional feature will be the ability to flash prepared firmware
from an external storage, enabling it to restore a previous
firmware or to perform firmware updates prepared by the
full firmware. In case of a fatal error during the booting
of the full firmware, the failsafe version of firmware will be
loaded.

The failsafe firmware will support only essential functions
such as communicating with the GPS sensor, the Iridium
modem, and the external storage. Its purpose is the con-
tinuation of the highest priority task and a last resort for
recovering from critical errors. When booted, it will period-
ically send a package with GPS coordinates, requested diag-
nostic messages and possible direct flash commands. This

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

15



operation will allow it to try and recover the functionality
of the probe or at least receive the most critical data.

The full firmware will feature FreeRTOS with tasks to read
data from all of the sensors, process and save the data and
communicate through the Iridium satellite network. It will
be able to receive new settings (e.g., a new task schedule)
or differential updates, which will be processed and a new
version of the firmware prepared on the external storage
device.

This modular firmware design allows for the flash memory
to be partitioned into sections. The bootloader and failsafe
sections will be read-only, so it will not be possible to change
their content. Instead, they will be less complicated and ex-
tensively tested. There will be a section after that which
can be changed by the first two modules. Also, the prepa-
ration of the full firmware allows the tasks to be compiled
and linked into predetermined sized blocks, which will allow
for more efficient and partial upgrades since a change in one
task should not require to change or move compiled code
from every other task.

3.3 Software design
The mediator of the communication between the users and
the probe has the most significant role in supporting the
proposed architecture. For this purpose, custom software
is implemented. To accommodate the need for adaptability
and accessibility of the software being developed, a dedi-
cated server is necessary.

As of the writing of this paper, the server has an IntelR©

CoreTM i7 930 CPU with a base frequency of 2.80 GHz and
four physical cores, 12 GB random access memory (RAM),
two 1 TB hard disk drives (HDDs) and a 128 GB solid-
state drive (SSD). For the purpose of data redundancy and
reliability, a Redundant Arrays of Inexpensive Disks (RAID)
1 is set up on the two used HDDs [6]. The server runs a
Linux operating system Debian Gnu/Linux 9 (stretch).

The tasks, running on the server, are divided into three main
groups: two-way communication with the probe, data han-
dling, and hosting services and websites.

As already mentioned, the probe will send data using expen-
sive satellite communication. The cost is calculated based
on the number of sent messages [7], therefore the data are
compressed to decrease the number of messages. The pack-
ages in the Iridium satellite network will be transmitted from
the sending device to the predefined web service, which will
run on the described server. The received data must be de-
compressed before it can be used. Communication can also
occur in the other direction – from the server to the probe.
In this case, only the critical updates are sent (e.g., firmware
updates).

Data handling refers to storing, analyzing, and visualizing
received data. The received data are planned to be stored in
the InfluxDB database, which is designed for the time-series
data. This way, data can be efficiently queried for analysis
and visualization. Data analysis is necessary for controlling
the probe and research. Based on the data received from
the core of the probe, we can inspect its state and act upon

unexpected failures with firmware updates. The data from
the additional sensors will be used for the analysis of the
surroundings of the probe (e.g., water pollution). For data
visualization, Grafana will be used due to its supported in-
tegration with InfluxDB. Different visualization techniques
will help the authors in monitoring the probe and improve
the research. The dataflow is presented in Figure 7.

Server

Iridium
satellite network

Decompression

(2)
Raw
data (3)

Raw
data

InfluxDB

(4)
Data

Analysis

(6)
Queried

data

Visualization

(5)
Queried

data

Website

Developer
dashboard

Compression

(10)
Critical
updates

(12)
Raw data

(7)
Grafana

visualizing
metrics

Probe

(1)
Raw data

Web service

(8)
Evaluated

data

(9)
Grafana

visualizing
metrics

(11) 
Raw data

Figure 7: A high-level depiction of the data flow
in the communication between the probe and the
server.

The analyzed and visualized data will be available to the au-
thors on the web-based developer dashboard, hosted on the
server. The server also hosts a custom-made public website,
which shows only data relevant to the general public [1]. For
both websites, Nginx, Node.js and MongoDB are used. Be-
cause of the growing scale of the project and its codebase,
the server also features GitLab for source code management
and OpenProject for project management. All services run
in separate Docker containers for easier management. Daily
backups are implemented to prevent unexpected loss of data.

4. CONCLUSION
The release of the probe into the ocean is planned for late
February 2020.

The main project’s goal is to gather various types of infor-
mation about the ocean, such as temperature and currents.

Based on other explored projects, the expected battery life
of the probe is around 300 to 400 days, but the authors
will try to extend that life by utilizing its smart battery
management.

The collected data may prove useful to large scale initiatives
such as the Ocean Cleanup [8] and Argo [5], therefore giving
a further incentive to the support of the project.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

16



Technical difficulties related to different electrical and me-
chanical aspects of the probe are to be expected, such as
its water tightness, the lifespan of its various sensors and
the battery, and electrical failures due to increased humidity
and temperature. As far as the software side of the project
is concerned, complications related to the maintenance and
setup of the services running on the server may arise, such
as data handling, data visualization, security and so forth.

5. ACKNOWLEDGMENTS
The authors acknowledge the financial support from the In-
stitute of Computer Science of the Faculty of Electrical En-
gineering and Computer Science and would like to thank
mag. Jernej Kranjec for his guidance and assistance.

6. REFERENCES
[1] ZZZ. Our homepage. http://zzz.feri.um.si/, July 2019.

Accessed on 2019-5-9.

[2] M. Buoy. Homepage. https://www.makerbuoy.com/,
May 2019. Accessed on 2019-5-8.

[3] designlab.ac. Omni - ocean monitoring network
initiative. https://hackaday.io/project/165963-omni-
ocean-monitoring-network-initiative, July 2019.
Accessed on 2019-5-9.

[4] B. Sutton. Zl1six ocean floater build and voyage archive
page. https://www.qsl.net/zl1rs/oceanfloater1.html,
July 2016. Accessed on 2019-5-9.

[5] Argo. Homepage. http://www.argo.ucsd.edu/, July
2019. Accessed on 2019-5-9.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson. Raid: High-performance, reliable
secondary storage. ACM Comput. Surv., 26(2):145–185,
June 1994.

[7] R. Seven. Rock seven | truly global gps tracking and
messaging systems using iridium satellite | rockblock.
https://www.rock7.com/products-rockblock, 2014.
Accessed on 2019-7-28.

[8] T. O. Cleanup. Homepage.
https://theoceancleanup.com/, July 2019. Accessed on
2019-5-9.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

17





Efficient Collision Detection for Path Planning for
Industrial Robots

László Zahorán
EPIC Center of Excellence in Production

Informatics and Control,
Inst. Comp. Sci. & Control, Hun. Acad. Sci., and
Dept. Measurement and Information Systems,

Budapest Univ. Technology and Economics
laszlo.zahoran@sztaki.mta.hu

András Kovács
EPIC Center of Excellence in Production

Informatics and Control,
Inst. Comp. Sci. & Control, Hun. Acad. Sci.

andras.kovacs@sztaki.mta.hu

ABSTRACT
Efficient collision detection is crucial for the success of auto-
mated process planning and path planning for robotic ma-
nipulation and assembly. Yet, collision detection for articu-
lated industrial robots holds various challenges. This paper
gives an overview of these challenges, and presents an ef-
ficient implementation of collision detection techniques for
such robots. The applicability of the developed techniques
to support path planning in an industrial test case is also
illustrated.

1. INTRODUCTION
A crucial requirement towards automated process planning
and path planning methods for robotic operations is that
they must guarantee the geometric feasibility of the com-
puted plans, by ensuring that no collisions occur during the
movement of the robot and the manipulated objects. At
the same time, collision detection is typically the computa-
tionally most challenging sub-problem of path planning [1,
3]. Particular challenges in collision detection for industrial
robots lie in the following:

• Collision detection methods must be able to find all
potential collisions of every moving and static object
in the work cell, including the robot, the gripper, the
workpiece, the fixture, as well as all static elements of
the cell.

• The above objects are all characterized by complex
free-form geometries.

• While the continuous motion of the robot must be
checked for collisions, nearly all approaches in com-
putational geometry focus on checking static configu-
rations. To overcome this discrepancy, continuous col-

Figure 1: Work cell with a UR5 robot and a Robotiq
gripper.

lision detection must be reduced to an appropriately
defined series of queries on static configurations.

• The kinematic chain of typical articulated industrial
robots consists of 6 or more robots links. The mo-
tion of these links can be characterized in the joint
configuration space of the robot, i.e., by the vector of
joint angles. At the same time, effective tasks must be
planned and collisions must be detected in the Carte-
sian space. Hence, the mapping between the two rep-
resentations must be maintained at all times. For this
purpose, forward kinematic transformation calculates
the position of the robot links and the grasped objects
in the Cartesian space from the joint angles, whereas
inverse kinematics search for the joint angles that re-
alize a given position in the Cartesian space. Yet, for
many kinematic structures, the inverse kinematic cal-
culation is a challenging computational problem with
non-unique solutions.

• Certain types of contact between objects are allowed,
e.g., between neighboring robot links or between the
gripper and the workpiece. Moreover, the allowed types
of contact may vary over time, e.g., a workpiece can
touch the fixture when the robot inserts the workpiece

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

19DOI: https://doi.org/10.26493/978-961-7055-82-5.19-22



into the fixture, but the same contact is forbidden
during other motions. Hence, collision rules must be
maintained dynamically.

• The configuration of the robot and the work cell may
vary over time, e.g., when the robot grasps or releases
the workpiece. These configuration changes must be
managed, and pre-computation techniques must be han-
dled with care.

• Since process planning and path planning methods
rely on iteratively checking a vast number of candidate
robot motions, the computational efficiency of collision
detection is crucial.

Various generic-purpose libraries are available today for col-
lision detection, such as the Proximity Query Package (PQP)
[2] or the Flexible Collision Library (FCL) [4]. These li-
braries offer collision and distance queries for static configu-
rations of free-form 3D solid objects (although FCL handles
some restricted forms of continuous collision queries as well).
Hence, they must be extended substantially to respond to
the above challenges.

This paper presents a library for efficient collision detection
for industrial robots. The library is built on the top of the
generic-purpose PQP collision detection engine, and extends
it with various kinematic and geometric calculation methods
to serve the needs of robotic process planning and path plan-
ning. On the top of these collision detection techniques, the
library contains an implementation of the Rapidly-exploring
Random Trees (RRT) single-query probabilistic path plan-
ning algorithm [3], as well as the Probabilistic Roadmaps
(PRM) multi-query path planner [1], which use the continu-
ous collision queries as a so-called local planner (i.e., check-
ing the direct movement of the industrial robot between two
configurations). The paper gives an overview of the im-
plemented collision detection techniques and demonstrates
their computational efficiency in industrial case studies.

2. COLLISION DETECTION FOR ARTIC-
ULATED INDUSTRIAL ROBOTS

As pointed out above, collision detection for industrial robots
requires extending general-purpose collision libraries in two
main directions: (1) robot motions specified in the joint con-
figuration space must be mapped into the Cartesian space
using forward kinematic calculations; and (2) continuous
collision detection for the robot motion must be reduced to
checking an appropriate series of static robot configurations.

A static configuration c of an m-axis industrial robot can be
characterized by a vector of m joint angles in the form of
c = (α0, ..., αm) ∈ C, where C is the configuration space of
the robot, defined by its joint limits. As usual, we focus on
linear movements in the joint configuration space. Accord-
ingly, the movement between start configuration c0 and end
configuration c1 is interpolated by c(t) = c0(1−t)+c1t, t ∈
[0, 1]. This movement is considered free of collisions if every
static configuration c(t) is collision-free for t ∈ [0, 1].

Collision detection must capture every so-called collision ob-
ject in the work cell, including the robot (with a separate

collision object for each robot link), the gripper (with in-
terchangeable geometric models corresponding to different
degrees of opening), the workpieces, as well as all other ob-
jects in the cell. While the geometry of each collision object
is characterized by a triangle mesh representation, given in
an STL file, a configuration is described by a homogeneous
transformation matrix for each collision object. This ma-
trix can be computed by forward kinematics from the robot
configuration.

Collision rules between pairs of collision objects define whe-
ther the contact of the two objects is considered as a collision
or not. By default, the contact of the neighboring robot
links, as well as the contact between the robot base and the
static work cell elements are allowed. These default rules can
be overridden dynamically depending on the task executed
by the robot.

2.1 Sampling-based Collision Detection
Sampling-based collision detection is the most common ap-
proach in robotics to check robot movements. The contin-
uous movement c(t) is sampled by looking at a finite set of
static configurations c(ti), with i = 1, ..., n. Since the mo-
tion is given in the joint configuration space, the sampling
rate is controlled by angle δ that specifies the maximum dis-
tance between neighboring samples c(ti) and c(ti+1), using
the maximum norm over different joints. The movement is
classified as collision-free if and only if every static sample
is collision-free.

A critical issue is the choice of parameter δ: using a low
value is computationally demanding, whereas increasing δ
also increases the risk of missing a collision. The proper
value must be determined for each application individually.

Since typical path planning algorithms cannot exploit any
information on the location of collisions, the checking of con-
tinuous movements can be interrupted upon finding the first
collision. This implies that the performance of the algorithm
on colliding motions can be improved significantly by the
proper ordering of the collision queries.

As a heuristic, the probability of collision rises with the dis-
tance from known collision-free configurations. Accordingly,
the implemented algorithm checks the start and end con-
figurations first, whereas in the iterative step, it bisects the
previous motion sections until the distance decreases below
the given threshold δ. Furthermore, when checking a given
static configuration, collision queries for different pairs of
collision objects are ordered by the probability of collision,
estimated based on historic records. In contrast, all collision
queries must be executed on collision-free movements.

2.2 Conservative Advancement
Instead of the above heuristic method for checking contin-
uous movements, another approach that provides a formal
guarantee of collision-free continuous movements is strongly
preferred. Such an approach is the so-called Conservative
Advancement (CA) method [6], which achieves this by us-
ing distance queries on static configurations. The approach
exploits that if, in a collision-free configuration c1, the dis-
tance between two collision objects is d, and the relative
displacement of these objects in configuration c2 compared

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

20



to c1 is at most d, then these object do not collide in c2
either.

The key difficulty with applying CA to industrial robots
is that robot movements are defined in the joint configu-
ration space, whereas the distance queries compute the al-
lowed displacement in the Cartesian space. To overcome this
discrepancy, an upper estimation of the Cartesian displace-
ment caused by any given joint motion is required. This
paper compares two implementations of this upper bound:
the original bound from [6] and an improved bound. The
bounds use the following information:

• ϕ = (ϕ0, ϕ1, ..., ϕm): for an m axis industrial robot,
the difference of joint angles between the start and
end configurations of the motion.

• di, ai: Denavit-Hartenberg parameters of the ith robot
link (joint offsets in z and y).

• li: length of ith link from the lower joint node to the
farthest point of the robot link geometry.

• ri: distance of upper and lower joints of the ith robot
link.

Based on these input data, an upper bound of δi,j = (
∑j

x=i((rx+
lx)

∑x
y=i(ϕy))) can be given on the relative displacement of

the ith and jth element of the kinematic chain.

Again, the appropriate choice and ordering of distance queries
is crucial for computational efficiency. For this purpose, the
proposed algorithm maintains a queue of so-called CA tasks,
each CA task consisting of a pair of collision objects, as well
as a start and end configuration of the motion. At every
point in time, the queue is ordered by the length of the mo-
tion and the historic likelihood of collision between the two
objects. Initially, the queue contains one CA task for each
relevant object pair with the original start and end configu-
rations of the motion.

In each iterative step, the first CA task is taken from the
queue, and the distance of the two collision objects is com-
puted in the mid-point of the motion, i.e., configuration
c( 1

2
). If the query returns with a positive distance, then con-

figurations c( 1
2

−
) and c( 1

2

+
), i.e., the first and last proven

collision-free configurations before and after the mid-point
are determined according to the above bound. If these are
different from the start and end configurations of the orig-
inal CA task, then two new CA tasks corresponding to

[c(0), c( 1
2

−
)] and [c( 1

2

+
), c(1)] are created and inserted into

the queue. The process is terminated when a collision is
encountered or the queue is empty, where the latter means
that the original movement is proven to be collision-free.

The accuracy of the upper bounds on the displacement greatly
influences the number of distance queries executed. The
original bound of [6] uses the bound for most distant ob-
jects in the kinematic chain for every pair of collision objects.
The proposed minor improvement is to apply the bound δi,j
corresponding to the specific objects.

Figure 2: Conservative Advancement.

2.3 Comparison of the Two Approaches
The boolean collision queries used by the sampling-based
approach are an order of magnitude faster than distance
queries. CA can balance this difference by taking larger
steps, and therefore executing less queries, especially in large
open spaces. A crucial qualitative difference between the two
approaches is that CA gives a formal guarantee of the geo-
metrical feasibility of continuous robot movements. More-
over, CA can be naturally extended to maintain a specified
safety distance between the objects in the work cell.

3. COMPUTATIONAL EXPERIMENTS
The presented algorithms were implemented in C# in MS
Visual Studio. The solution contains separate projects for
PQP (a native C++ project with C# wrapper), CollisionLi-
brary (a C# class library including UR5, UR10 robot mod-
els, RobotiQ and other grippers, implementations of collision
detection, path planning, and path smoothing algorithms),
CellVisualizer (a WPF application for the graphical anima-
tion of the work cell and the computed paths), as well as a
console application for executing tests and measurements.

A reference solution was developed in the commercial robot
simulation and off-line programming software called RoboDK
[5] for verifying the correctness of the results and for com-
paring the computational performance to the state-of-the-
art. RoboDK has a Python API to implement custom al-
gorithms, and offers high-level functionality for simulating
robot movements and collision detection. In the presented
experiments, the Move_JTest(configA, configB, samplFreq)

method of RoboDK was used, which implements a sampling-
based approach for checking robot movements. It should be
noted that this method finds every colliding object pair (al-
though this information is not used later), whereas our im-
plementation looks for the first collision only. Some differ-
ence in the performance of the two approaches may also stem
from the difference of the publicly available UR5 robot ge-
ometry adopted in our implementation and the robot model
applied in RoboDK. All experiments were performed on an
Intel i5-4200M 2.5GHz dual-core CPU and 8GB RAM.

3.1 Experiment Design
The work cell used in the experiment contains a UR5 robot
equipped with a Robotiq gripper, as well as a robot stand
and a work table with fixtures for assembling a ball valve.
The number of collision objects is 10, with 165 000 triangles
altogether, resulting in 27 active collision rules. The exper-
imental workspace has large collision-free spaces as ca. 80%
of checked movements are collision-free. The rate of col-
liding and non-colliding movements greatly affects perfor-

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

21



mance, since the checking of colliding movements can be
interrupted upon finding the first collision.

Computational experiments were performed on a set of 5000
continuous robot movements arising when building a PRM
on the above work cell with 1000 random robot configura-
tions and 5 neighbors per node. The average length of the
robot movements was 45–50◦ in each robot joint.

Four different collision detection techniques were compared:
sampling in RoboDK and in the proposed implementation,
as well as CA in the proposed implementation with the orig-
inal displacement bound of [6] and its improved version.

3.2 Experimental Results
The computational results are displayed in Table 1, which
displays the key parameters, as well as the results achieved
by the four algorithms. Both sampling-based approaches
used a 1◦ sampling rate for the joint movements, without
giving a formal guarantee of the geometrical feasibility of the
checked motions or maintaining a safety distance. With this
sampling rate, our implementation classified 2 out of 5000
colliding robot motions incorrectly as collision-free. A higher
number of mistakes by RoboDK probably stems from the dif-
ferent geometrical models used.The efficient implementation
resulted in a 23 times speedup compared to RoboDK.

In contrast, the two CA implementations both provided a
guarantee of geometrical feasibility and could maintain a
safety distance. At the same time, in order to facilitate
a comparison between CA and sampling, a safety distance
of 0 mm was used in the experiments. Moreover, allowing
a relative tolerance of 3% in the PQP distance queries re-
sulted in a considerable speedup of the algorithm, without
any incorrect classifications on this test set. As a result,
the two CA implementations returned correct and identi-
cal classifications. The improved displacement upper bound
resulted in a 2.89 times speedup compared to the original
upper bound, and computation times only 19% higher than
for sampling. We regard this as a favorable tradeoff for the
formal guarantee on the feasibility of the robot motions.

Table 1: Experimental Results
Sampling Sampling CA CA

(RoboDK) (own) (orig.) (impr.)

Sampling 1◦ 1◦ - -
Safety dist. - - 0 mm 0 mm
Guarantee - - X X

Time [mm:ss] 38:08 01:41 05:47 02:00

4. CONCLUSIONS
The paper gave an overview of the computational challenges
in continuous collision detection for articulated industrial
robots, and presented alternative approaches to tackling this
challenge. An efficient implementation of the sampling and
the conservative advancement approaches was introduced,
with various improvements compared to earlier algorithms in
the literature. In computational experiments, the proposed
sampling-based algorithm achieved a 23 times speedup com-
pared to a similar algorithm of a commercial software, whereas
an improved displacement bound for conservative advance-
ment resulted in a nearly three times speedup w.r.t. using
the earlier bound from the literature.

The presented collision detection library is a key compo-
nent of a process planning and path planning toolbox for
industrial robots under development. Future work will fo-
cus on the completion of the robotic path planning algo-
rithms, especially PRM and RRT, on top of the presented
collision detection library. We plan to apply this library to
process planning in various industrial applications, includ-
ing a camera-based robotic pick-and-place work cell and the
assembly of electric components. A research challenge is
the handling of constraints and performance measurements
defined in the Cartesian task space, such as linear motions
or Cartesian speed limits, while planning in the robot joint
configuration space.

5. ACKNOWLEDGMENTS
This research has been supported by the ED 18-2-2018-0006
grant on “Research on prime exploitation of the potential
provided by the industrial digitalisation” and the GINOP-
2.3.2-15-2016-00002 grant on an “Industry 4.0 research and
innovation center of excellence”. A. Kovács acknowledges
the support of the János Bolyai Research Fellowship.

6. REFERENCES
[1] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.

Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation,
12(4):566–580, 1996.

[2] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha.
Fast proximity queries with swept sphere volumes. In
Proc. IEEE Int. Conf. Robot. Autom., pages 3719–3726,
2000.

[3] S. M. Lavalle and J. J. Kuffner. Rapidly-exploring
random trees: Progress and prospects. In Algorithmic
and Computational Robotics: New Directions, pages
293–308, 2000.

[4] J. Pan, S. Chitta, and D. Manocha. FCL: A general
purpose library for collision and proximity queries. In
IEEE International Conference on Robotics and
Automation, pages 3859–3866, 2012.

[5] RoboDK. Simulation and OLP for robots, 2019.
https://robodk.com/.

[6] F. Schwarzer, M. Saha, and J.-C. Latombe. Exact
Collision Checking of Robot Paths, pages 25–41.
Springer, 2004.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

22



Sensitivity analysis for p-median problems

Ágnes Vida
Institute of Informatics
University of Szeged

Vida.Agnes.1@stud.u-szeged.hu

Boglárka G.-Tóth
Institute of Informatics
University of Szeged

boglarka@inf.u-szeged.hu

ABSTRACT
Network location problems are commonly associated with
real world situations such as locating a new facility in a
city or setting up a new server in a computer network. In
these real world situations changes can come up quite often,
such as a closed road because of an accident, or a broken
connection in the network. These kind of problems give the
motivation of this paper. Our aim was to inspect, how an
existing network operates, when something has changed and
how sensitive a p-median solution is to the same changes.
During our research we concentrated on deleting edges and
solving p-median problem. In the p-median problem we try
to locate p facilities so the sum of the distances between
the facilities and the demand points is minimal. During the
sensitivity analysis we deleted different amounts of the edges
and we also tested the problem by locating 1, 2 or 3 medians
to get a complex picture about the computational results.
During our work, we concentrated on how the solution and
the location of the medians change. To get a complex picture
about the results we used two different graphs. After the
tests we saw, that according to the shape of the graph, the
number of the changes can be quite different. On the one
hand, when we worked with a graph which is easy to cut,
the changes of the solution was unstable, and relatively big,
while with a well-balanced graph, the changes were not that
significant. On the other hand, the location of the facilities
did not change too much with either graph.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Graph TheoryNet-
work problems; G.1.6 [Mathematics of Computing]: Op-
timization

General Terms
Theory, application

Keywords
p-median, sensitivity analysis, Mixed Integer Programming

1. INTRODUCTION
Locating facilities is a common problem when we want to
work with networks such as communication networks or traf-
fic flows. In order to work with these networks in a math-
ematical aspect, we use an abstract model, a finite (often
weighted, non-oriented) graph G which has a set of vertices
(V ) and connecting edges (E ⊆ {V, V }). Weights are com-
monly attached to the edges, which represent the cost of the
transportation or the length of the road. Network locating
problems include several different questions, such as abso-
lute center and median problems or p-center and p-median
problems. For a good introduction in facility location prob-
lems on networks, see [2].

In this paper we will concentrate on the p-median problem.
The aim of the p-median problem is to find the optimal
placement of p facilities on the network. The optimal lo-
cation of the medians means that the sum of the distances
between the vertices and the closest facility is minimal. To
find the optimal location of the facilities, we must complete
the following constraints: one demand point can be assigned
to only one facility and maximum one facility can be placed
at one vertex. We also have to provide that exactly p me-
dians are located. To understand the p-median problem we
studied the article by Hakimi [3].

During our research we always worked with non-oriented
n-vertex graphs with edge weights, which can also be rep-
resented with a square matrix, called weight matrix. Since
we are working on a graph, distance is always understood
as shortest path on the graph. From the weight matrix we
need to determine the distance matrix with some methods
computing shortest paths on a graph.

The aim of this paper is to find out how sensitive a p-median
solution is when we delete edges from the graph. The moti-
vation is the use of traffic networks, to inspect how the traffic
and the optimal locations of the p-medians change if some-
thing happens in the network. In this paper we concentrated
on deleting edges with different likelihood, to inspect how
the cost and the optimal location of the p-medians change.
During our research we tested every case on two different
graphs to get a more complex picture about the computa-
tional results.

Similar works has been done investigating the effect of
changing network density in [4], and also studying facility
reliability issues in Berman et al. [1].

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

23DOI: https://doi.org/10.26493/978-961-7055-82-5.23-26



Figure 1: Graph of Italy with cities on the islands (left), graph of Germany (right)

2. THE P -MEDIAN PROBLEM
The aim of solving a p-median problem is to locate exactly p
medians by minimizing the sum of the distances between the
demand points and the located facilities and also completing
a few constraints mentioned below. In order to solve the
problem we used the following model which is based on a
non-oriented weighted n-vertex graph. We worked with the
graph as a set of vertices (V ) connected by weighted edges
(E ⊆ {V, V }).

min
∑
i,j∈V

dijyij (1)

s.t.
∑
j∈V

yij = 1 ∀i ∈ V (2)

∑
i∈V

zi = p; (3)

yij ≤ zj ∀i, j ∈ V ; (4)

To represent the distances between the vertices we used a
parameter dij , which is a squared matrix. The j-th column
of the i-th row represents the length of the shortest path
between the i-th and j-th vertex.

We also used two set of variables: yij and zi. The binary
variable yij is to sign that the i-th demand point is sup-
plied by the j-th facility and zi is a binary variable to sign
if we locate a facility on vertex i. The aim of the model is
to minimize the sum of the distances between the demand
points and the facilities. The optimal solution must com-
plete three constraints: (2) gives the condition, that exactly
one facility has to be assigned to one vertex; the number of
located facilities must be p which is required by constraint
(3); and finally, that a demand point can only be assigned
to a facility, that is located, see (4).

Our aim is to minimize the sum of the distances between
the demand points and the closest facility, but we do not
have any direct constraint for that. That is because the
model minimizes the sum of dijyij , and so in this way the
model automatically chooses the best solution, which is the
minimal distance between a demand point and the assigned
facility.

3. METHODS
Our choice to get the computational results was AMPL,
which is A Mathematical Programming Language. First we
implemented the model to solve the p-median problem. In
order to obtain the optimal solution of this Mixed Integer
Programming (MIP) problem we used a commercial solver
called CPLEX.

Our goal was to inspect how the solution reacts to changes,
especially deleting edges. At first, we always ran the algo-
rithm with no changes to inspect the original solution, than
we modified it with different amounts. We increased the
number of deleted edges always by 10%. After deleting 40%
of the edges we decided to stop, because we noticed that the
graph fell apart. We also checked how the solution operates
when we want to locate 1, 2 or 3 medians with the different
number of deleted edges. In every variation of the number of
deleted edges and the number of located medians we made
20 test runs.

In order to delete edges, first we made a mapping, so we
could work with the edges like an ordered set. Then we ran-
domly choose the right number of edges to delete from the
graph. To implement this random choose, we used some of
the built-in functions of AMPL. Deleting the desired amount
of edges was done uniformly. In a cycle we have generated a
random integer value k from 1 to the number of still exist-
ing edges and removed the kth edge, until we removed the
required number of edges.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

24



After deleting the chosen edges, we determined the dis-
tance matrix on the modified graph. In order to get the
distances, we used the definition of shortest path, and the
Ford-Fulkerson algorithm.

4. RESULTS AND ANALYSIS
The algorithm was tested on two data files, modeling the
largest cities and roads of Italy and Germany. In order to
have a better view on the results, we draw the graphs using
the real coordinates of the cities in Figure 1. We segmented
the tests according to how many medians are located (1,
2 or 3) and the number of the deleted edges (0, 10%, 20%,
30% and 40%). We made 20 test runs for every segment and
reported the average, the minimum and maximum changes.
The tests show that the shape of the graph influences the
results a lot.

The results for the comparison of the solutions in changes of
the cost, as well as in the changes in the locations for both
the Italian and German networks can be seen in Table 1.
Next we discuss the results that can be read from the table.

4.1 Changes of the cost
In the Italian graph, when we deleted 10% of the edges, the
solution increased by 309% on average. This is quite huge
change as in the German graph this increase was only 10%,
and all changes was smaller than 134%. But let us concen-
trate first the results for the Italian graph. We have found
that the solution was very unstable for this graph. When we
located 1 median, by deleting 10% of the graph the minimal
increase was by 22% while the maximal increase was around
1086% and the average increase was 309%. By deleting the
double amount of the edges, the average increase of the ob-
jective function was also about double (615%), the minimal
and maximal increase was 82% and 1314%, respectively. We
also tested the results during deleting 30% and 40% of the
edges. With a 30% loss, the average increase of the objective
value was 1275%. After deleting 40% percent of the edges
we stopped increasing the number of deleted edges, because
we found that the increase of the objective value is too high
(1387% on average), and we have seen that this happened
because the graph fell apart. We can see a big jump in the
minimum changes in costs from 20% to 30%, when from
82% it grew to 737%. Similar, but not so evident jumps can
be seen in the minimum change when 2 or 3 medians are
located.

When we located two medians, the results were quite similar.
The main difference showed, when we deleted only 10% of
the edges. In this case the cost increased by only 51%. By
deleting 20% of the edges the average increase of the cost
was around 345%, by deleting 30% of the edges, the cost
increased by 925% on average, and next to a 40% loss of the
edges, the objective value increased by 1421%.

The problem of locating 3 medians showed similar results
as the 2-median problem. The average increase of the cost
was 79% when we only deleted 10% of the edges and 1352%
when we deleted 40% of the edges. Altogether, we can see
that locating more medians makes less changes in cost in
general for this graph (except 40% deleted edges), although
not significantly.

When we used the graph of Germany, the results were dif-
ferent. The tendency was the same, but the amount of the
rise of the solution was much lower. First we located only
one facility. By deleting 10% of the edges and locating one
facility the cost increased by 10% (minimum 1% and maxi-
mum 23%). By deleting more edges, the solution increased
slightly, but not as much as with the Italian graph. When
we deleted 40% of the edges, the cost increased with 84%
on average (minimum 57%, maximum 124%). As with the
previous graph, we repeated the test by locating two and
then three facilities. The results were not that different, by
deleting 10% of the edges the increase of the cost was 10%
with 2 medians and 9% with 3 medians. Even by deleting
40% of the edges the increase of the cost was around 117%.
In this case, the changes compared for the number of medi-
ans is quite balanced, as opposed to the Italian case. During
the tests we could see, that there are vertices where facilities
are more likely to be placed.

4.2 Changes of the locations
We also paid attention to the location of the medians. We
have made a ranking on the number of times a vertex was
selected as a median in the 20 runs. When we had to lo-
cate only one facility with the Italian graph, we saw that
the original location was only the 11th most likely place to
put the facility at. With the German graph the result was
much better: the original placement of the median was the
4th in the ranking. When we solved a 2-median problem,
the results were the same with the two graphs: the original
locations of the medians were in the 5 most likely vertices
to put a facility at. With 3-median problem the results were
also similar. The original location of the medians were still
in the top 5 vertices to locate a facility on. All in all we can
say, that the location of the facilities can change according
to the number of deleted edges, but the original locations
are almost always in the top 5 vertices.

During our research we also made computations to inspect,
how far the new locations from the old ones are. To get an
objective picture about the results we always used the orig-
inal graphs and the shortest distances between the old and
the new locations of the medians. When we located more
than 1 median, we choose the smallest change between the
old and the new locations in pairs. Although the values
were higher with the German graph, the tendency was the
same. With the Italian graph when we located only one
facility and deleted 10% of the edges the distance between
the old and the new one was 16.6 on average (minimum 4,
maximum 51). Even with deleting 40% of the edges the av-
erage distance was 61.1 (minimum 8, maximum 81). This
small amount of change is interesting if we see, that the cost
increased much more under these conditions. When we lo-
cated 2 medians, the changes were even smaller. With a
10% loss, the distance between the old and the new facilities
was 3.9. When we deleted 40% of the edges the distance was
still around 9%. When we located 3 medians, the new loca-
tions were farther than with the 2- and 3-median problems.
In this case the minimal change was around 10 (by deleting
10% of the edges) and the maximal change was about 44 (by
deleting 30% of the edges).

With the German graph we did not see significant differ-
ences. During 1-median problem and a 10% loss the dis-

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

25



Table 1: Results for the comparison of the solutions in changes of the cost, as well as in the changes in the
locations for both the Italian and German networks.

tance between the old and the new location of the facilities
was 81.6 on average (minimum 0, maximum 247). Even
with a 40% loss of the edges the distance was 188.35 on av-
erage (minimum 178, maximum 264). When we located 2
medians, the average change was around 40 (minimum 0,
maximum 195) with deleting 10% of the edges and 105,2
(minimum 0, maximum 276) with a 40% loss. With the 3-
median problem, the minimal change was about 70 and the
maximal change was about 132.

5. CONCLUSION AND FUTURE PLANS
By the results we can see that the change of the solution
during deleting edges highly depends on the shape of the
graph we work with. If the graph has just a few connections
between two main parts, deleting of the edges can cause
very high costs. If we work with a well-balanced graph,
even by deleting 40% of the edges the solution changes just
a little. We also could see that the location of the facilities
do not change too much. In the future we are planning
to inspect how a non-oriented weighted graph reacts to p-
median problem when we change the weights of edges, like
when traffic changes or when we add new edges. We also
would like to check if we can make clusters according to how
likely that a facility is located in a vertex. Furthermore we
want to inspect how a non-oriented weighted graph reacts
to other problems such as p-center problem during similar
conditions.

6. ACKNOWLEDGMENTS
This research was supported by the European Union and
co-financed by the European Social Fund (EFOP-3.6.3-
VEKOP-16-2017-00002).

7. REFERENCES
[1] O. Berman, D. Krass, and M. B. C. Menezes. Facility

reliability issues in network p-median problems:
Strategic centralization and co-location effects.
Operations Research, 55(2):332–350, 2007.

[2] M. S. Daskin. Network and Discrete Location: Models,
Algorithms and Applications. John Wiley and Sons,
New York, 1995.

[3] S. L. Hakimi. Optimum locations of switching centers
and the absolute centers and medians of a graph.
Operations Research, 12(3):450–459, 1964.

[4] X. Zhao, K. Carling, Z. Dan, and J. HÃěkansson.
Network density and the p-median solution. Technical
report, Högskolan Dalarna, Borlänge, 2013.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

26



A two-stage heuristic for the university course timetabling
problem

Máté Pintér
University of Szeged, Institute of Informatics

Árpád tér 2
Szeged, Hungary, 6720

pmate955@gmail.com

Balázs Dávid
∗

InnoRenew CoE
Livade 6

Izola, Slovenia, 6310
balazs.david@innorenew.eu
University of Primorska, FAMNIT

Glagoljaška ulica 8
Koper, Slovenia, 6000

balazs.david@famnit.upr.si

ABSTRACT
This paper presents a two-stage solution method for the
curriculum-based university course timetabling problem. First,
an initial solution is created using a recursive search algo-
rithm, then its quality is improved with a local search heuris-
tic. This method utilizes a tabu list of forbidden transfor-
mations, as well as a destructive step at the end of each
iteration. The algorithm is tested on datasets of the 2007
International Timetabling Competition.

Keywords
University course timetabling; Local search; Heuristic

1. INTRODUCTION
Creating the timetable of employees is a crucial task for
any organization, and educational institutions are no excep-
tions. While timetabling problems can sometimes be ex-
tremely hard, they are still solved manually in many cases.
This process can take a long time, and the efficiency of the
resulting timetables is not guaranteed.

There are several different types of timetabling problems
that have to be solved in academia, mainly connected to
the students or the employees. This paper will cover such a
specific problem, namely university course timetabling.

The first section of this paper will introduce the field of
course timetabling, and present the curriculum-based uni-
versity course timetabling problem in detail. After this, we
present a two-stage heuristic for the solution of the problem,
which is then tested on datasets of the 2007 International

∗Supervisor

Timetabling Competition. These instances are based on real
world timetables of the University of Udine, Italy.

2. COURSE TIMETABLING
Course timetabling is an optimization problem, where re-
sources (courses, rooms, teachers) are allocated to create
a timetable that satisfies given constraints. The problem
schedules courses and teachers into available time-slots, while
trying to avoid the different types of conflicts that can arise.
Many variations exist for the course timetabling problem,
but the most important ones are the following:

• Curriculum-based Course Timetabling : courses belong
to one of several curricula, and courses of the same
curriculum cannot be scheduled in overlapping time-
slots.

• Post Enrollment based Course Timetabling : the prob-
lem also considers the students enrolled to the courses,
and introduces several constraints connected to their
attendance.

• Examination Timetabling : similar to the general time-
tabling problem, but considers exam committees in-
stead of teachers, and also deals with the availability
of the students for their required exams.

This paper will give a solution algorithm for the curriculum-
based course timetabling problem. The following sections
will define the problem, present its necessary resources and
constraints, and give a short literature overview of the field.

2.1 Problem definition
The curriculum-based university course timetabling problem
schedules a set C of courses over a horizon of d days to cre-
ate a timetable. Each day is divided into s time-slots, and
a course has to be assigned to one or more consecutive slots
(depending on its length). A room has to be selected where
the course will take place, and a teacher is also assigned as
the instructor. Courses can belong to different curricula, in-
troducing additional constraints to the assignment. Courses
of the same curriculum usually cannot overlap, or should be

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

27DOI: https://doi.org/10.26493/978-961-7055-82-5.27-30



scheduled close to each other in time. The constraints of the
problem belong into two different groups.

Hard constraints should always be respected, and a timetable
is not allowed to violate any of them. The most common
hard constraints are the following:

• Course assignment: The timetable must contain all
courses, and every course has to be assigned to exactly
one room, time-slot and teacher.

• Room availability: A given room cannot have more
than one assigned course at the same time-slot.

• Teacher availability: A given teacher cannot be as-
signed to more than one course at the same time-slot.

• Room capacity: A course cannot be scheduled to a
room with less capacity than the number of students
on the course. Some papers consider this as a soft
constraint.

• Teacher availability: Teachers can have time-slots when
they are not available. Naturally, no course can be as-
signed to a teacher at a time-slot where they are not
available. Some papers consider this as a soft con-
straint.

Soft constraints can be violated, but they come with a penalty.
The typical soft constraints are the following:

• Compactness: Isolated courses in a curriculum should
be avoided. A course is isolated, if no other course
of the same curriculum is scheduled in its previous or
next time-slot.

• Room stability: Courses of the same curriculum should
be assigned to the same room, if possible.

• Minimal number of days: Courses of the same curricu-
lum should be spread out over the week: they should
be scheduled to a given d amount of days.

• As it was mentioned above, some of the hard constraint
(room capacity, unavailability of teachers) can also be
considered as a soft constraint.

The objective of the problem is to create a timetable that
does not violate any hard constraint, and has a minimum
penalty associated to the violations of its soft constraints.

2.2 Literature overview
University course timetabling has been researched inten-
sively in the past decades. The problem itself is NP-complete,
which was proven by Even et al. [8], and as a result, many
different solution methods were considered for its solution.
A good overview of these is given by Bettinelli et al. [4] and
Babaei et al. [2]. In the following, we will present some the
most important of the approaches. An early mathematical
model was given by [1], who consider it as a 3-dimensional
assignment problem between courses, time-slots and rooms.
A more efficient, two-phase mathematical model is presented

by Lach et al. [9], where only courses and time-slots are as-
signed using a binary variable, and the possible rooms for
each time-slot are described by an undirected graph. This
approach reduces the model size, and is able to provide so-
lutions for significantly bigger instances.

As mathematical approaches can result in a large model even
for relatively small instances, various heuristic methods were
also developed for the problem. Different variations of the
local search were presented, such as the tabu search of Lü
and Hao [10] or the simulated annealing of Bellio et al. [3].
Improved versions of Dueck’s Great Deluge algorithm [7] -
a genetic algorithm with a philosophy close to local search -
were also been published [5]. Hybrid algorithms with multi-
ple stages are also available, like Müller [11] or Shaker et al.
[12], both of which are modifications of the Great Deluge.

3. A TWO-STAGE HEURISTIC
In this section, we propose a two-stage heuristic for solving
the curriculum-based university course timetabling problem.
First, an initial feasible solution is created using a greedy
recursive algorithm, then a local search heuristic is utilized
to improve its quality.

We apply the following soft constraints from Section 2: Com-
pactness, Room capacity, Room stability, Minimum number
of days. The reason for this is that we use the datasets of the
Curriculum-based Course Timetabling track of the Interna-
tional Timetabling Competition 2007 (ITC) [6] as evaluation
for the method, and this competition also considers the same
constraints.

The initial solution is created using a recursive search, which
only considers the hard constraints of the problem. The
pseudo-code of this can be seen in Algorithm 1.

Algorithm 1 Recursive algorithm for initial solution.

Funct recSol(course, node, list)

1: if All courses are assigned then
2: return TRUE
3: end if
4: if No more assignment possibilities then
5: return FALSE
6: end if
7: if (course, node) assignment is invalid then
8: node := next (timeslot,room) pair
9: return recSol(course, node, list)

10: end if
11: if course.teacher is available az node.timeslot then
12: list ← (course,node) assignment
13: node := next (timeslot,room) pair
14: course := next free course
15: return recSol(course, node, list)
16: else
17: node := next (timeslot,room) pair
18: return recSol(course, node, list)
19: end if

The function requires 3 input data: the course to be consid-
ered (course), the proposed time-slot and room pair (node),
and a list of nodes corresponding to the partial solution that
is already built (list). Initially, list is empty, and course and

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

28



node are randomly chosen. If the assignment of the current
course is not possible to this node, then another one is cho-
sen and a recursive call is made. If the course is compatible
with the node, and the teacher of the course is also available
at the time-slot in question, then the assignment is saved,
and the next recursive call will feature a new course. The al-
gorithm terminates if all the courses are assigned, or if there
are no more possible nodes to choose from.

As the initial solution is built without considering any soft
constraints, it will have a high penalty. A local search
method is then used to decrease this penalty by also tak-
ing the soft constraints of the problem into consideration.
The outline of the algorithm can be seen in Algorithm 2.

Algorithm 2 Local search algorithm.

Funct localSearch(tt, tabu, n)

1: i := 0
2: bestSol := tt
3: while n > 0 do
4: while foundBetter = TRUE do
5: bestCost = cost(tt)
6: for Each a := (course,timeslot,room) in tt do
7: for Each b := (timeslot,room) in tt do
8: if (a,b) ∈ tabu then
9: CONTINUE

10: end if
11: neighbor := tt.swap(a,b)
12: if neighbor violates hard constraints then
13: CONTINUE
14: end if
15: if cost(neighbor) < bestNeighCost then
16: bestNeighCost := cost(neighbor)
17: bestNeigh := neighbor
18: tabutCand := (b,a)
19: end if
20: end for
21: end for
22: if bestNeighCost < bestCost then
23: bestCost := cost(bestNeigh)
24: bestSol := bestNeigh
25: tabu ← tabuCand
26: foundBetter := TRUE
27: else
28: foundBetter := FALSE
29: end if
30: if i > x then
31: tabu(0).erase()
32: i := 0
33: end if
34: i := i+1
35: end while
36: destructSearch(bestSol, tabu)
37: n := n-1
38: end while
39: return bestSol

The input of the algorithm is the tt timetable of assignments
from the first stage, the empty list tabu for forbidden neigh-
borhood transformations, and a parameter n that gives the
number of destruction steps. The algorithm considers two
different neighborhood transformations:

• Swap: The timeslot of a (course, timeslot,room) as-
signment is swapped with the slot of another assign-
ment.

• Move: A (course,timeslot,room) assignment is moved
to another (timeslot,room) position.

The process examines all possible neighborhood moves for
a given timetable, and applies the one with the smallest
penalty. If the resulting timetable is better than the cur-
rently stored best one, then it becomes the new best solu-
tion, and the neighborhood move that was used to produce
this solution is saved to the tabu list of forbidden moves.

If a local optimum is found, the algorithm switches to the
destructSearch phase. In this phase, a set number of neigh-
borhood moves are applied to the solution, strictly decreas-
ing the quality with each step. After this destruction phase,
the local search part of the algorithm is executed again,
searching for a new local optimum, while also using the exist-
ing tabu list to avoid certain transformations. The number
of these destruction steps is given by the parameter n in the
input.

4. TEST RESULTS
As it was mentioned in the previous Section, the algorithm
was tested on the instances of the 2007 International Time-
tabling Competition. These instances are based on real-life
input from the University of Udine. The competition pro-
vided three sets of input: Early, Late and Hidden datasets.
Due to space limitations, we will only present the first two
of these datasets. The most important information about
these can be seen in Table 1.

Table 1: Input characteristics
Inst. Day Slot Room Course Curr. Unav.

Early Datasets
Comp01 5 6 6 30 14 53
Comp02 5 5 16 82 70 513
Comp03 5 5 16 72 68 382
Comp04 5 5 18 79 57 396
Comp05 6 6 9 54 139 771
Comp06 5 5 18 108 70 632
Comp07 5 5 20 131 77 667

Late Datasets
Comp08 5 5 18 86 61 478
Comp09 5 5 18 76 75 405
Comp10 5 5 18 115 67 694
Comp11 5 9 5 30 13 94
Comp12 6 6 11 88 150 1368
Comp13 5 5 19 82 66 468
Comp14 5 5 17 85 60 486

For each instance, the table gives the number of days, time-
slots per day, rooms, courses, curricula and unavailability
constraints for the teachers. The following penalty values
were used for the soft constraints:

• Compactness: Every isolated course is worth 2 ponts.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

29



• Roomy capacity : The capacity of a room can be vio-
lated, but every student above the capacity is worth 1
point.

• Room stability : If lectures of a course are scheduled
into more than one room, then the penalty for each
room beyond the first is 1 point.

• Minimum number of days: If a course is scheduled
on less days than the minimum required number, 5
penalty points are given for missing each day.

Test results of the algorithm are presented in Table 2. The
algorithm was executed ten times for each instance, and the
rounded average of these solutions is give by the table. The
destructive search ran for 30 steps in each iteration.

Table 2: Test results
Instance Runningtime Penalty

Early Datasets
Comp01 32s 51
Comp02 16M26s 328
Comp03 9M16s 314
Comp04 8M25s 348
Comp05 7M32s 423
Comp06 14M54s 503
Comp07 15M46s 592

Late Datasets
Comp08 10M31s 361
Comp09 12M3s 285
Comp10 16M17s 536
Comp11 43s 37
Comp12 11M4s 525
Comp13 9M42s 331
Comp14 7M32s 434

The table presents the total running time of both stages
for each instance, as well as the total penalty of the best
achieved solution. It can be seen from the results that while
the running times are acceptable, the penalties in some cases
are a bit high. This means that there is still room for the
improvement of the algorithm.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we examined the curriculum-based univer-
sity course timetabling problem, and developed a two-stage
heuristic algorithm for its solution. This algorithm uses a
greedy recursive approach to construct an initial solution,
then increases its quality with the help of a local search
method. While the local search itself is not fully a tabu
search algorithm, it utilizes a tabu list to store forbidden
transformations. A destructive step is also executed to es-
cape local optima at the end of each iteration.

The algorithm was tested on the datasets of the 2007 Inter-
national Timetabling Competition. While feasible solutions
were found for all instances, both their running time and
quality can be improved. We would like to implement faster
approaches for creating the initial solution, as well as im-
plementing a proper tabu search algorithm instead of the
current local search.

6. ACKNOWLEDGMENTS
Máté Pintér was supported by ”Integrated program for train-
ing new generation of scientists in the fields of computer
science”, no EFOP-3.6.3- VEKOP-16-2017-0002 (supported
by the European Union and co-funded by the European
Social Fund). Balázs Dávid acknowledges the European
Commission for funding the InnoRenew CoE project (Grant
Agreement #739574) under the Horizon2020 Widespread-
Teaming program and the Republic of Slovenia (Investment
funding of the Republic of Slovenia and the European Union
of the European regional Development Fund), and is thank-
ful for the support of the National Research, Development
and Innovation Office - NKFIH Fund No. SNN-117879.

7. REFERENCES
[1] E. A. Akkoyunlu. A linear algorithm for computing

the optimum university timetable*. The Computer
Journal, 16(4):347–350, 1973.

[2] H. Babaei, J. Karimpour, and A. Hadidi. A survey of
approaches for university course timetabling problem.
Computers & Industrial Engineering, 86:43–59, 2015.

[3] R. Bellio, S. Ceschia, L. D. Gaspero, A. Schaerf, and
T. Urli. Feature-based tuning of simulated annealing
applied to the curriculum-based course timetabling
problem. ArXiv, abs/1409.7186, 2014.

[4] A. Bettinelli, V. Cacchiani, R. Roberti, and P. Toth.
An overview of curriculum-based course timetabling.
TOP: An Official Journal of the Spanish Society of
Statistics and Operations Research, 23(2):313–349,
2015.

[5] E. Burke, Y. Bykov, J. Newall, and S. Petrović. A
time-predefined approach to course timetabling.
Yugoslav Journal of Operations Research,
13(2):139–151, 2003.

[6] I. T. Competition. International timetabling
competition 2007.
http://www.cs.qub.ac.uk/itc2007/index.htm, 2007.
Accessed: 2019-07-30.

[7] G. Dueck. New optimization heuristics: The great
deluge algorithm and the record-to-record travel.
Journal of Computational Physics, 104(1):86 – 92,
1993.

[8] S. Even, A. Itai, and A. Shamir. On the complexity of
time table and multi-commodity flow problems. In
16th Annual Symposium on Foundations of Computer
Science, pages 184–193, 1975.

[9] G. Lach and M. E. Lübbecke. Curriculum based
course timetabling: new solutions to udine benchmark
instances. Annals of Operations Research,
194(1):255–272, 2012.

[10] Z. Lü and J.-K. Hao. Adaptive tabu search for course
timetabling. European Journal of Operational
Research, 200(1):235–244, 2010.

[11] T. Müller. Itc2007 solver description: a hybrid
approach. Annals of Operations Research, 172(1):429,
2009.

[12] K. Shaker, S. Abdullah, A. Alqudsi, and H. Jalab.
Hybridizing meta-heuristics approaches for solving
university course timetabling problems. In P. Lingras,
M. Wolski, C. Cornelis, S. Mitra, and P. Wasilewski,
editors, Rough Sets and Knowledge Technology, pages
374–384. Springer Berlin Heidelberg, 2013.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

30



Detection of different shapes and materials by glasses for
blind and visually impaired

Urban Košale
Faculty of Electrical

Engineering and Computer
Science

University of Maribor
Maribor, Slovenia

urban.kosale@student.um.si

Pia Žnidaršič
Faculty of Electrical

Engineering and Computer
Science

University of Maribor
Maribor, Slovenia

pia.znidarsic@student.um.si

Kristjan Stopar
Faculty of Electrical

Engineering and Computer
Science

University of Maribor
Maribor, Slovenia

kristjan.stopar@student.um.si

ABSTRACT
Glasses for blind and visually Impaired were built to help
blind and visually impaired to navigate around diverse range
of obstacles.

In this study, we tested how well the glasses detect different
everyday shapes and materials. The results are crucial for
further development, because this device has to able to de-
tect wide variety of shapes and materials in order to be safe
and reliable for everyday usage.

For this purpose, we set glasses on a stationary stand and po-
inted them directly into the obstacle centre. Obstacles made
of different materials were attached on a moving stand. The
results showed that the sensors discriminate the shapes at
the distances between 30 and 90 cm from the glasses. At the
distance of 60 cm the triangle was successfully discriminated
from circle and rectangle, whereas the latter two were not
easy to discriminate. The second experiment showed that
plexi glass and glass present a substantial detection chal-
lenge. On the other hand, aluminium foil, white paper and
micro polyester are easily detected.

Keywords
glasses for the blind and visually imapred, detection, sensor,
obstacle, material, shape

1. INTRODUCTION
Glasses for Blind and Visually Impaired is a device built to
help blind and visually impaired to navigate around diverse
range of obstacles. This device consists of two parts. First
part is a head mounted sensor assembly whereas the second
is a haptic feedback device, worn as a belt. Detection of
obstacles is performed by 10 VL53L1X Time of Flight (ToF)
sensors [1], whose ranging data is then processed with an
on-board ESP-WROOM-32 microcontroller [2] and send via
Bluetooth connection to the belt. The belt is equipped with
a second ESP-WROOM-32 on-board microcontroller, which
interprets the data and presents it to the wearer with 15
vibration motors arranged in a square grid. The glasses are
worn on the head, whereas the belt is attached around the
stomach area.

The motivation behind this work is the desire for this de-
vice to work in as many circumstances as possible. Rapid
technological development brings new materials and shapes
in our everyday living space. If we add fast lifestyle to the
mix, we get the need for a device that can reliably detect
different shapes and materials in close to real time.

Performance of the device was already tested on specifically
designed polygon with 12 test subjects. The results are writ-
ten in the next section. Expanding on these results, in this
study, we focus on testing and quantifying device’s ability
to detect different shapes and materials.

2. POLYGON TEST RESULTS
Test took place in the main lobby of the Faculty of Electri-
cal Engineering and Computer Science, Maribor. This area
was used because it is big and open so the glasses detected
the obstacles only. It also provided room lighting conditions
and flat surface. Polygon seen on Figure 1 consisted out
of 4 obstacles made out of polystyrene foam. They simula-
ted everyday objects such as tables, poles and doors. Fifth
obstacle which simulated hanging obstacle was tested indi-
vidually. Every participant had two attempts. Test focused
on the number of detected obstacles, number of steps and
time necessary to finish the walk through the polygon [3].

All participants detected the fifth, hanging obstacle, but
only one out of 12 participants detected an obstacle which
simulated the table. On average 2.8±0.39 out of 4 obstacles
were detected in the first run and 2.92 ± 0.29 out of 4 in

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

31DOI: https://doi.org/10.26493/978-961-7055-82-5.31-34



the second run. Average time required for participants to
finish the walk through the polygon was 80 ± 31.5 seconds
in the first and 56 ± 18.3 seconds in the second run. On
average, participants made 56.2± 15.7 steps in the first and
48.3 ± 10.7 in the second run [3].

From increased walking speed on the second attempt we can
conclude that participant certainty with the device increa-
sed over time. This was also reflected in improved obstacle
detection. [3]

Figure 1: test polygon, set up in the main lobby of
the Faculty of Electrical Engineering and Computer
Science, Maribor.

3. DETECTION ZONE
Detection of obstacles is implemented using ToF sensors
VL53L1X. They provide a maximum range of 4 m and a
typical field of view of 27◦. These sensors were selected
because they are relatively affordable, offer long range de-
tection, are power efficient, support I2C interface and are
small enough to enable slim design [1].

Detection zone of the device is constructed by an array of 10
sensors, providing 150◦ wide and 50◦ tall coverage as seen on
Figure 3. Sensors are divided into three groups. First group
consists of two sensors which are oriented straight in the
direction of view. One sensor is oriented horizontally and the
other is oriented 30 degrees below the horizon. Second group
consists of 6 sensors, 3 on the left side and 3 on the right side.
Left group is vertically tilted for 22◦ to the left, whereas right
group is vertically tilted for 22◦ to the right. The upper
two and the lower two sensors in this group are horizontally
tilted for 10◦ away from the central sensor which is oriented
straight into direction of view. Third group consists of 2
sensors which are oriented straight into direction of view
and vertically tilted for 44◦ [4].

Figure 2: Groups of TOF sensors.

The device was designed in the shape of wearable glasses and
3D printed from Polylactic Acid plastic [4]. This technique
was used to achieve special shape which allows sensors to be
mounted in a way seen on Figure 3

Figure 3: Fields of view for TOF sensors, mounted
on the 3D printed glasses.

4. OBSTACLE DETECTION
We designed a special experiment to test how well the glas-
ses detect obstacles of various shapes and materials. Shapes
used were circle, triangle and square. Their surface me-
asured 2116 cmˆ2. Materials used were grey polystyrene
foam, white paper, aluminium foil, glass, polyester, plexi-
glass, ABS, wood, micro polyester and cotton.

Experiment took place in closed environment under dim li-
ghting conditions. Controlled light conditions for this test
are important as they effect sensors performance. Device
was mounted on a 176 cm high stationary wooden stand
which pointed directly into the obstacle centre. Obstacles
were placed 30, 60 and 90 cm away from the glasses. Quality
of detection was determined with data output consisting of
10 integers, ranging from 0 to 4096. Here, value 0 denotes
the minimal and value 4096 the maximal distance. In order
to increase the accuracy, every distance was calculated by
averaging ten measurements.

Shape discrimination ability was assessed by counting the
number of sensors that detected the obstacle. Here, we also
considered the distance of obstacle from the glasses.

The initial testing session consisted of recognizing different
shapes at the distance of 30 cm (Figure 4). The sensors
could not recognize the shape at all. This suggests that the
distance is too small for sensors to reach their full potential.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

32



Figure 4: Results of obstacle detection at the dis-
tance of 30 cm.

In the next testing session, the obstacles were positioned at
the distance of 60 cm from the sensors (Figure 5). This time
the circle and the square were not differentiated, but the
triangle was. Sensors 6 and 7 have pointed out a difference.

Figure 5: Results of obstacle detection at the dis-
tance of 60 cm.

In the third testing session, the obstacles were positioned
90 cm away from the sensors (Figure 6). In this case, the
recognizability was again poor. The distance turned out to
be too great, since only one (the middle) sensor detected
any of the shapes.

Figure 6: Results of obstacle detection at the dis-
tance of 90 cm.

In the last experimental session we tested the detectability
of different materials. For this purpose, we put the square
obstacle with surface area of 2116 cm2 encased with the cho-
sen material at the maximum detection distance, which was
determined by moving the obstacle away from the glasses
until it was no longer detected. The results demonstrated
(Figure 7) that the aluminium foil has the best detection
potential while ABS has the worst. Glass was also tested,
but was excluded from the results in Figure 7, because its
detection depends on the sensor angle. Under the specific
angle glasses could detect it up to the distance of 1.5 m,
but in most cases glass wasn’t detected. Plexi glass was also
interesting because it was consistently detected, but only by
one or two sensors, even on a 30 cm distance.

Figure 7: Maximum detection distances for tested
materials.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

33



5. CONCLUSIONS
The glasses detected all the obstacles, but the number of
sensors detecting the obstacle decreased with the distance.
Circle and square were detected better than triangle. This
suggests that different shapes trigger different responses of
sensors on glasses.

We have also demonstrated that the optimal distance for the
sensors to recognize the shapes is somewhere between 30 and
90 cm. At the distance of 60 cm the triangle was successfully
discriminated from circle and rectangle, whereas the latter
two were not easy to discriminate. The biggest discrimina-
tive power of glasses likely lies at the distances between 30
and 60 cm. However, additional tests are required to ana-
lyse the performance at different points in this interval (for
example at 40 and 50 cm).

The problem with misdetection of more distant obstacles is a
consequence of detection principle used in our design. Emit-
ted light cone is 27◦ wide and it expands with the distance.
As a result, the obstacle takes up smaller part of the cone
and that affects its detection. There are two solutions of this
problem. The first one is to narrow the emitted light cone
width by software or hardware. The second one includes
adding the video camera for better object recognition.

Our experiments further showed that some of the materials
are poorly detected. For example plexi glass and glass pre-
sent a substantial detection challenge. On the other hand,
aluminium foil, white paper and micro polyester are easily
detected. In conclusion, the more reflective the material, the
more sensors detect it. Further tests are required to analyse
whether or not the problem of glass detection could be ad-
dressed by the use of video camera. As an alternative, an
ultrasonic sensor could also be used.

At the moment our glasses perform best in open enviro-
nments while detecting materials which are better at reflec-
ting infrared light. The test justifies that the glasses could
be used in everyday environments, because materials tested
make up most of potential obstacles, glass and other similar
materials being the exception.

Plasticity of the brain allows blind and visually impaired
people to have significantly increased perception of touch
[4]. Because of that, we would like to additionaly test if
they can feel the difference between various shapes.

6. ACKNOWLEDGMENTS
We thank prof. dr. Aleš Holobar (University of Maribor)
and M.S. Jernej Kranjec (University of Maribor) for their as-
sistance in writing the article and all the professional advises
they provided. We also thank Tomaž Ferbežar (Secondary
school of electronics and technical gymnasium) and Boris
Plut (Secondary school of electronics and technical gymna-
sium) for their help in the early stages of development.

7. REFERENCES
[1] STMicroelectronics ht-

tps://www.st.com/resource/en/datasheet/vl53l1x.pdf.

[2] Adafruit HUZZAH32 - ESP32 Feather.
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-
huzzah32-esp32-feather.pdf. May
2019.

[3] K. Stopar. Naprava za vizualno-kinestetično
navigacijoslepih in slabovidnih. September 2019
(submitted for review).

[4] C. M. Bauer, G. V. Hirsch, L. Zajac, B. Koo, O.
Collignon, L. B.
Merabet Multimodal MR-imaging reveals large-scale
structural and functional connectivity changes in
profound early blindness PLOSjONE. March 22, 2017.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

34



Comparison of clustering optimization for classification
with PSO algorithms

Klemen Berkovič
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46
Maribor, Slovenia

klemen.berkovic
@student.um.si

Uroš Mlakar
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46
Maribor, Slovenia

uros.mlakar@um.si

Borko Bošković
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46
Maribor, Slovenia

borko.boskovic@um.si

Iztok Fister
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46
Maribor, Slovenia

iztok.fister@um.si

Janez Brest
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46
Maribor, Slovenia

janez.brest@um.si

ABSTRACT
In this paper, we compare Particle Swarm Optimization
(PSO) algorithms for classification based on clustering. Clus-
tering is presented within the proposed PSO algorithms as
an optimization problem, and captured in a so called fitness
function. Clusters are presented with centers that should
represent the classes hidden in data. With the help of PSO
algorithms and proper fitness function, we optimize centers
of the clusters. Because clustering belongs to a field of unsu-
pervised learning methods, we redefine the clustering prob-
lem to supervised learning with a new fitness function that
helps PSO algorithms in finding clusters centers that can
classify instances of data to the right class. Two experiments
are performed in our study. In the former, various fitness
functions for classification based on clustering are tested.
The latter measures the performance of PSO algorithms us-
ing the best fitness function from the first experiment. For
testing the PSO algorithms, we use three different datasets.
Friedman non-parametric statistical test, and Nemenyi and
Wilcoxon post-hoc tests are conducted to properly compare
the PSO algorithms.

Categories and Subject Descriptors
I.5.3 [Pattern recognition]: Clustering; G.1.6 [Numerical
analysis]: Optimization

Keywords
clustering optimization, classification, particle swarm opti-
mization, statistical comparison

1. INTRODUCTION
In many fields, including physics, bioinformatics, engineer-
ing and economics, we can encounter problems, where from
a plethora of solutions we are interested in finding the most
suitable. These so called optimization problems (OPs) can
be sub-categorized into: discrete, continuous, and/or mixed-
variable problems [18]. The difference between three men-
tioned groups of OPs are the type of variables in their solu-
tion space. Discrete problems work with discrete variables
that are elements of N+ set, continuous problems have vari-
ables with elements of R set, while the mixed-variable prob-
lems can capture variables of both aforementioned sets.

Since we are usually limited by various computational re-
sources (e.g., computational power and space, problem’s
constraints), the complexity of OPs are increased and there-
fore we are forced to be satisfied with a ”good enough” so-
lutions for the real-world application. Definition of a ”good
enough” depends exclusively on the type of a problem. Ma-
jority of the OPs have a huge, yet finite solution spaces,
which can be solved approximately using meta-heuristics.
In our work we are focused on meta-heuristics algorithms
that are inspired by nature and are a part of Swarm Intel-
ligence (SI) algorithms [4]. From the field of SI algorithms,
we use be using PSO algorithms.

In this work, we are focused on minimization of single-objective
OPs that can be defined mathematically, as follows:

f
(
x∗
)
≤ min

x∈Ω
f (x) , (1)

where f : RD 7→ R represents the fitness function of the
problem to be solved, x is D dimensional vector consisting
of problem variables and x∗ is a global minimum or the best
solution of the problem. The fitness function f is realized as
a mathematical formula or a set of empirical data that refer
to the problem of interest. In order to make the problem
simpler, we demand that the solutions should be in some

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

35DOI: https://doi.org/10.26493/978-961-7055-82-5.35-42



feasible space, written mathematically as x ∈ Ω. In our
case, the feasible space Ω is determined by the upper and
lower bounds of their corresponding problem variables.

Classification is a process of labeling data based on some at-
tributes to the right type of information or to the right class.
Clustering is a process of searching for centers of groups so
called clusters that have very similar data instances. With
clustering, we can find cluster centers that can be used for
classification. The K-means algorithm is one of the most
well known algorithms for clustering [9]. Unfortunately, it
has two major defects: (1) the number of clusters must be
known in advance, and (2) bad initial centers of clusters can
degrades the performance. Because of those defects, many
meta-heuristic algorithms have been used for clustering, like
Big Bang–Big Crunch Algorithm (BBBCA) [8], Black Hole
(BH) [7], Gravitational Search Algorithm (GSA) [6], and
many others.

The rest of the paper is organized as follows: In Section 2
PSO algorithms used in our work are presented. Section 3
defines the clustering problem and presents some fitness
function suitable for clustering with PSO algorithms. Sec-
tion 4 shows the results of two experiments: The former
based on usage of various fitness functions, while the lat-
ter compares different algorithms for classification based on
clustering. Finally, in Section 5, we conclude our paper with
summarizing the performed work and provide some direc-
tions for feature work.

2. PARTICLE SWARM OPTIMIZATION
PSO is an optimization algorithm for solving problems which
solutions variables are elements of R. The basic PSO algo-
rithm was presented by Kennedy and Eberhart in 1995 [10].
Individual in PSO algorithms is presented as a particle that
has current position, personal best position and velocity. In
each generation the PSO algorithm goes over the whole pop-
ulation and for each particle first updates it’s velocity based
on the following expression:

v
(t+1)
i = ω(t+1) × v

(t)
i + c1 × r1 ⊗

(
x

(t)
pb,i − x

(t)
i

)
+ c2 × r2 ⊗

(
x

(t)
gb − x

(t)
i

)
,

(2)

where ⊗ represents element wise multiplication, r1 and r2

have uniform random distributed values with D components

∈ [0, 1], ω(t+1) is an inertia weight, v
(t)
i is a vector represent-

ing i-th particle velocity at time t and v
(t+1)
i represents new

velocity for particle i. Factors c1 and c2 represent social and
cognitive learning rates respectively. After the velocity up-
dating is done, the updating of particle position takes place
as follows:

x
(t+1)
i = x

(t)
i + v

(t+1)
i . (3)

After particle updates its position, the personal best po-
sition, and the global best positions are update based on
fitness value.

Opposition-base learning and velocity clamping are two fun-
damental phases of Opposition-Based Particle Swarm Opti-
mization with Velocity Clamping algorithm (OVCPSO) de-
fined in [16]. In the OVCPSO algorithm, opposition-based
learning phase [19] is used for calculating the opposite par-

ticle x′i as follows:

x′i = xmax + xmin − xi. (4)

Opposition-based learning phase in OVCPSO consists of
calculating opposite particles swarm X′ then creating an
union between original and opposite swarm of particle as
X′′ = X ∪X′. And the last step of opposition-based learn-
ing phase is to select N best particles based on the fitness
values of particles in X′′ that will present our new swarm
of particles. The OVCPSO algorithm has velocity clamping
operator that repairs the velocity of particles if the velocity
exceeds some maximum velocity.

One of the the variations of PSO algorithm that we used
in our work is Mutated Centered Unified Particle Swam
Optimization (MCUPSO) algorithm described in [20]. The
MCUPSO algorithm uses two additional operators that are
centering and mutation. Centering operator was described
in the CPSO algorithm [12] and mutation operator was de-
fined in Mutated Particle Swarm Optimization (MPSO) al-
gorithm [17]. Both operators are executed at the end of the
algorithm generation. The MCUPSO algorithm has a new
equation for velocity updating defined as:

v
(t+1)
i = ω(t+1) × v

(t)
i

+ c1 × r1 ⊗
(
x

(t)
pb,i − x

(t)
i

)
⊗ r3

+ c2 × r2 ⊗
(
x

(t)
gb − x

(t)
i

)
⊗ (1− r3) ,

(5)

where r3 is a D component vector with uniform random
numbers ∈ [0, 1].

Because of the bad performance of the PSO algorithm on
multi-modal OPs, authors in [11] developed a PSO algo-
rithm called Comprehensive Learning Particle Swarm Op-
timizer (CLPSO) algorithm which overcomes this problem.
The CLPSO algorithm uses the basic PSO algorithm with
additional comprehensive learning phase, where comprehen-
sive learning phase uses all personal best positions for up-
dating particles velocity. Particle velocity is update based
on:

v
(t+1)
i = ω(t+1) × v

(t)
i + c× r⊗

(
z− x

(t)
i

)
, (6)

where c is user defined value, r is randomly uniform dis-
tributed vector with number of components equal to num-
ber of components in the solution and z is vector that is
composed from different personal best positions.

In our implementation, we added solution repairing opera-
tor that is executed after the position of particle in updated.
Solution repairing is done based on mirroring back the com-
ponents of the solution that are out of the allowed search
space back into the search space. Mirroring of bad compo-
nents is based on modulo operation.

3. CLUSTERING OPTIMIZATION
Clustering is one of the most important data analysis tech-
niques that involves analysis of multivariate data. It is a
method of unsupervised machine learning for pattern recog-
nition, data mining, supervised machine learning, image anal-
ysis, bioinformatics, prediction, etc. Result of clustering
optimization is centers of clusters, where instances of one
cluster have maximum similarity between each other and

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

36



minimum similarity from instances of the other groups [13].
In Figure 1, a simple clustering problem is presented, where
we can simply find the centers of the clusters. In Figure 2,

7.5 5.0 2.5 0.0 2.5 5.0
a1

10

8

6

4

2

0

a 2
Class 0
Class 1
Class 2

Figure 1: Example of simple clustering dataset

the harder clustering problem is shown, where the centers
for clusters representing Class 0 and Class 2 are not so triv-
ial to find. Clustering problem defined in Figure 2 is quite

0 2 4 6 8
a1

4

2

0

2

a 2

Class 0
Class 1
Class 2

Figure 2: Example of hard clustering dataset

hard to solve with K-means algorithm because mean values
of attributes a1 and a2 are very close for both classes. Even
instances of class 0 and class 2 overlap for both attributes.
Therefore we use optimization to solve the problem of clus-
tering for all three classes represented in Figure 2. For clus-
tering optimization we will need a fitness function that will
guide our PSO algorithms toward optimal solutions in the
search space. In this study, we propose the following fitness
functions for clustering:

• basic clustering function,

• K-means clusters evaluation function,

• K-means clusters evaluation function with penalty func-
tion 1, and

• K-means clusters evaluation function with penalty func-
tion 2.

In the remainder of this section, the proposed fitness func-
tions for clustering optimization are described in more detail.

If we have a dataset as presented in Figure 1, we can use the
basic clustering function, expressed as:

f (O,Z) =

K−1∑
j=0

N−1∑
i=0

wi,j ×‖oi − zj‖2 , (7)

where O is a dataset without data labels, Z represents cen-
ters of clusters, W is a matrix with weights for instances for
each cluster, N is a number of instances in data set O, K
represents a number of clusters in Z and ‖oi − zj‖2 is the
Euclidean distance between instance oi and cluster center
zj . In paper [7] authors added weights W which are in ba-
sic clustering function set to one. Through weights, we can
provide additional information to the PSO algorithms. One
example of weights usage can be with setting the weight wi,j
to one if the instance i belong to cluster j else the weight
is set to zero. Second example of weights usage can be for
fuzzy clustering where weight wi,j has the value ∈ [0, 1].

The second fitness function for clustering optimization is
defined, as follows:

f (z,O) = p (z) +

N−1∑
i=0

K−1

min
j=0

(
wi,j ×‖oi − zj‖2

)
, (8)

where p denotes a penalty function [1]. Optimization func-
tion from Eq. (8) is used for evaluating clusters in the K-
means algorithm [9], where penalty function is not used.

The third fitness function for clustering optimization takes
into account intra-cluster distances, in other words:

p (z) =
∑
∀e∈I

A−1∑
j=0

min

(
rj

K
,max

(
0,

rj

K
−
∣∣ze0,j − ze1,j

∣∣)) , (9)

where rj is calculated with |uj − lj | and presents the intra-
cluster distance between j attributes upper uj and lower lj
limit, A is the number of attributes in one instance and I
is a set containing vectors with two components, that repre-
sents indexes of clusters. Set I is generated with the help of
Alg. 1 which gives pairs of cluster indexes that need to be
checked for intra-cluster distances. The penalty function 1

Algorithm 1: Creating set I for calculating penalty of in-
dividual Z based on cluster distances
Input: K
Output: I

1 I← {};
2 for i← 0 to K − 1 do
3 for j ← 1 to K − i− 1 do
4 if i 6= K − j − 1 then
5 I← {i,K − j − 1};
6 end

7 end

8 end
9 return I;

adds penalty based on intra-clusters distances, which means
if the intra-clusters distance is to small then based on that
distance the solution gets its penalty. The maximum penalty

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

37



that a solution can get is equal to:

A−1∑
i=0

uj − lj
K

, (10)

where the search space is divided into K partitions and every
cluster should be in partition occupied only by one cluster.

In our paper, we introduce the penalty function 2 for clus-
tering, defined as:

p (Z,O, c) =
(
1− a (Z,O, c)

)
×‖u− l‖2 × 2, (11)

where u represents upper limits of the search space, l repre-
sents lower limits of the search space, c represents a vector
of class or class labels of an instances in dataset O, and a is
a function for calculating the accuracy of a given centers Z.
In Eq. (11) we added multiplication factor of two, because
we want to give this penalty a higher weight. Eq. (11) rede-
fines the problem from unsupervised to supervised learning
method, because we added the information of how the in-
stance is classified to the learning method.

4. EXPERIMENTS AND RESULTS
In our work, we performed two separate experiments. The
first experiment, compares the fitness functions for classifi-
cation based on clustering. The second experiment, presents
statistical comparison of used PSO algorithms for classifica-
tion based on clustering with the best fitness function from
our first experiment. Python code of implemented algo-
rithms can be accessed at GitHub 1 and Python code of
experiments can be accessed at GitHub 2.

In our experiments we had to adjust the representation of
the individual so that all operators of PSO algorithms could
work properly. Figure 3 shows an example of an individual
in a population, where z1, · · · , zk represents clusters. Cen-
ters have K components which represent center points for
each attribute of the dataset. Figure 3 shows attributes
centers in form of symbols z1,1, · · · , z1,n for cluster one and
zk,1, · · · , zk,n for cluster k. For all PSO algorithms used in

Figure 3: Example of solution coding

our work, we used 1, 000 solution evaluations as an stopping
criteria.

In our experiments, we used the Friedman non-parametric
statistical test [5], where the hypothesis H0 asserts that
there is no significant statistical differences between algo-
rithms. If the Friedman test rejected H0, then we used the
Nemenyi post-hoc statistical test [14] for calculating critical

1https://github.com/kb2623/NiaPy
2https://github.com/kb2623/NiaPy-examples/tree/
master/clustering_datasets

distances determining, that the results of two algorithms are
significantly different, when their critical distance intervals
do not overlap. To be really confident that the difference be-
tween the results is significant, we ran a Wilcoxon 2-paired
signed-rank test [22]. We present the result of Wilcoxon test
in tables, where character ”+”denotes that the results of two
algorithms are statistically significantly different, while the
character ”∼” shows that the difference between the results
is not statistically significant. For better accuracy of sta-
tistical testing, we used 51 runs. To get a better accuracy
of Friedman tests, we used more then five classifiers in our
second experiment as a rule described in [2].

For comparing the results of our two experiments we used
error rate calculated as:

e (Z,O, c) = 1− a (Z,O, c)

N
, (12)

where O is a dataset, Z represents centers of clusters, N
represents number of instances in a dataset O, c hold the
labels that represent classes for each instance in a dataset
O and a is the function that returns the number of cor-
rectly classified instances of the dataset O based on centers
Z. Before the experiment runs we divided the dataset into
training and validation sets, where the validation set con-
tained 30% of samples of the original dataset. The error
rates that we compared where taken from the validation set
after the optimization process finished. Because of using the
error rate for statistical analysis with a combination of the
Friedman test ranks, we can say that the best algorithm has
the smallest mean rank.

4.1 Fitness function comparison
The first experiment that we conducted was for testing per-
formance of the fitness functions used for classification. In
this test, we used four different fitness functions described
in Section 3 with the standard PSO algorithm [10] and the
K-means algorithm. The K-means algorithm was initialized
with random centers of clusters. For the experiment we gen-
erated a random dataset with four different classes and 500
samples that had nine components or so called attributes.
For dataset generation we used scikt-learn’s [15] function
make_blobs. In the generated dataset each class had 125 in-
stances. Figure 4 is showing significant differences between

10 5 0 5 10
value

a0

a1

a2

a3

a4

a5

a6

a7

a8

at
tri

bu
te

Class

0.0 1.0 2.0 3.0

Figure 4: Samples grouped by class with mean val-
ues for each attribute in generated dataset

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

38

https://github.com/kb2623/NiaPy
https://github.com/kb2623/NiaPy-examples/tree/master/clustering_datasets
https://github.com/kb2623/NiaPy-examples/tree/master/clustering_datasets


intervals of data values for each class. In some cases mean
values are quite far away form each other. So based on this
information, the generated dataset should not be a hard
problem for clustering.

Table 1: Time of execution for one function evalua-
tion based on selected optimization function

Label Clustering fitness
function

Mean execution
time

Time complexity
(worst)

C Eq. (7) 11.8 µs ± 73.3 ns O (NKA)

CM Eq. (8) with penalty
set to 0

12 µs ± 56.3 ns O
(
KA (N + 1)

)
CMP Eq. (8) with penalty

based on Eq. (9)
46.3 µs ± 270 ns O

(
KA

(
N + K−1

2

))
CC Eq. (8) with penalty

based on Eq. (11)
76.9 ms ± 510 µs O

(
NA (2K + 1)

)

KMeans C CM CMP CC
Optimization functions

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ea

n 
ra

nk

Figure 5: The Friedman test mean ranks with the
Nemenyi post-hoc test with qα = 0.05 for optimiza-
tion functions and K-means algorithm

Table 1 shows a time complexity for each optimization func-
tion used in our first experiment. The experiment was ran on
computer with Intel’s i5-4570 processor on one thread with
16 GB of main memory. It can be seen from the results, that
the last fitness functions labeled CC is the best function for
classification based on clustering. This fitness function has
the highest time complexity and consequently the longest
execution time, but gives the best results compared to other
fitness functions used as seen on Figure 5. Friedman test
gave us the statistic value of 151.82682 and p-value of 8.264
69e−32, so for qα of 0.05 we can say that K-means and PSO
algorithm with different fitness functions work significantly
different on generated dataset. In Figure 5, we can observe
that the Nemenyi post-hoc test detected some statistical in-
significant differences between two groups of used methods.
First group with C, CM and CMP and second group with
K-means and CC. From Table 2, we can observe that sec-
ond group has statistically significant difference, but for the
first group only methods C and CM do not have statistically
significant differences.

4.2 Comparison of PSO algorithms
In our second experiment we measured the performance of
six different PSO algorithms and the basic K-means algo-
rithm labeled as KM. For the fitness function of PSO algo-
rithms we used Eq. (8) with penalty function described in

Table 2: The Wilcoxon test showing statistical dif-
ferences for qα = 0.05 for all clustering methods used

KMeans C CM CMP CC

KMeans ∞ + + + +

C / ∞ ∼ + +

CM / / ∞ + +

CMP / / / ∞ +

CC / / / / ∞

Eq. (11), since it showed the best performance in our first
experiment.

We measured the performance of algorithms used on three
different datasets, which are:

• Iris: Dataset has 150 instances with four attributes
where instances are labeled with three different classes.
All attributes in the dataset are elements of R+. Each
class in the dataset has 50 instances.

• Breast Cancer Wisconsin (BCW): Dataset has
569 instances distributed into two classes and each in-
stance has 30 attributes. All attributes in the dataset
are elements of R+ numbers set. The first class con-
tains 212 instances, while the second class contains 357
instances.

• Wine: One of the hardest dataset used in our second
experiment is the Wine dataset. The dataset has 178
instances with 13 attributes. All attributes except one
are elements of R+ set. Only attribute Proline is an
element of N+ set. The dataset has three classes. The
dataset contains 59 instances which belong to the first
class, 71 instances of the second and 48 instances of
the third class.

All datasets where obtained form the Machine learning repos-
itory [3]. The performance was measured based on the error
rates from 51 runs for each dataset.

Table 3: PSO algorithms parameters

PSO CLPSO OVCPSO MPSO CPSO MCUPSO

NP 25 25 25 25 25 25

c1 2.0 2.0 2.0 2.0 2.0 2.0

c2 2.0 2.0 2.0 2.0 2.0 2.0

ω / 0.7 / 0.7 0.7 0.7

vmin / -1.5 / / / /

vmax / 1.5 / / / /

m / 10 / / / /

ω0 / 0.9 / / / /

ω1 / 0.4 / / / /

c / 1.49445 / / / /

p0 / / 0.3 / / /

wmin / / 0.4 / / /

wmax / / 0.9 / / /

δ / / 0.1 / / /

µ / / / 10 / 10

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

39



Table 3 shows all the parameter values used by PSO algo-
rithms. Some parameters are used for all PSO algorithms,
while some are algorithm specific. If a parameter is not used
for a specific algorithm the symbol “/“ is used.

From Table 4, we can see that the best classifiers are K-
means and original PSO algorithm, because they got the
best minimum error rates. The CLPSO algorithm has the
best mean value and the MPSO algorithm has the smallest
standard deviation. One major setback of the OVCPSO al-
gorithm was its worst found centers for clusters, that’s clas-
sification accuracy was only 29%. Friedman test gave the

Table 4: Basic statistics of used algorithms for 51
runs on Iris dataset

KM PSO CLPSO OVCPSO MPSO CPSO MCUPSO

mean 0.0588 0.0553 0.0544 0.0644 0.0505 0.0579 0.0562

std 0.0376 0.0305 0.0356 0.0954 0.0274 0.0424 0.0380

min 0.0000 0.0000 0.0222 0.0222 0.0222 0.0222 0.0222

median 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444

max 0.1777 0.1333 0.2000 0.7111 0.1555 0.2444 0.1777

statistic value of 104.81 with p-value of 2.48215e−20. For
qα value of 0.05 we can say based on the Friedman test that
used algorithms work significantly different. Mean ranks of
algorithms from Figure 6 fit the results in the Table 4. Fig-
ure 6 shows that the MCUPSO algorithm holds the smallest
rank, despite not having the best accuracy. We can see that

KM PSO CLPSO OVCPSO MPSO CPSO MCUPSO
Algorithm

3

4

5

6

7

M
ea

n 
ra

nk

Figure 6: Friedman mean ranks and Nemenyi post-
hoc test with qα = 0.05 for PSO algorithms and the
K-means algorithm on Iris dataset

Nemenyi test implies that MCUPSO is not significantly dif-
ferent from CPSO, MPSO, CLPSO and PSO algorithms.
Based on results in Table 5 we can reject the the hypothesis
of Nemenyi test. The Wilcoxon test detected insignificant
difference only between MCUPSO, CPSO, MPSO and PSO
algorithms. Form the Wilcoxon test we can observe that
the MCUPSO algorithm is significantly different compared
to OVCPSO, CLPSO and K-means algorithms. MCUPSO,
CPSO and MPSO algorithms performed the best based on
Friedman mean rank and the Wilcoxon post-hoc test.

From the Table 6, we can observe that the best accuracy ob-
tained the CLPSO algorithm, the best mean value obtained
the OVCPSO algorithm, while the PSO algorithm recorded
the smallest standard deviation. The MCUPSO algorithm

Table 5: Detected significant statistical differences
with the Wilcoxon test with qα = 0.05 on Iris dataset

KM PSO CLPSO OVCPSO MPSO CPSO MCUPSO

KM ∞ + + + + + +

PSO / ∞ ∼ + ∼ ∼ ∼
CLPSO / / ∞ ∼ + ∼ +

OVCPSO / / / ∞ + + +

MPSO / / / / ∞ ∼ ∼
CPSO / / / / / ∞ ∼
MCUPSO / / / / / / ∞

obtained good results, it had the best median value and
the best accuracy in the worst run in all of the 51 runs.
Friedman test gave the statistics value of 174.63646 with
p-value of 4.66982e−35. For qα value of 0.05 we can say
that the Friedman test rejected the H0 hypothesis. We can
see from the Figure 7, that the MCUPSO algorithm ob-
tained the smallest rank, because of the average standard
deviation and smallest error rate on the worst run of the
algorithm. On the Figure 7, we can see that MCUPSO,

Table 6: Basic statistics of used algorithms for 51
runs on BCW dataset

KM PSO CLPSO OVCPSO MPSO CPSO MCUPSO

mean 0.1606 0.1552 0.1643 0.1479 0.1598 0.1672 0.1536

std 0.0768 0.0686 0.0779 0.0697 0.0728 0.0892 0.0723

min 0.0818 0.0818 0.0760 0.0818 0.0818 0.0877 0.0877

median 0.1345 0.1345 0.1403 0.1345 0.1345 0.1345 0.1169

max 0.3567 0.3684 0.3567 0.3567 0.3567 0.3684 0.3333

KM PSO CLPSO OVCPSO MPSO CPSO MCUPSO
Algorithm

2

3

4

5

6

7

M
ea

n 
ra

nk

Figure 7: Friedman mean ranks and the Nemenyi
post-hoc test with qα = 0.05 for PSO algorithms and
the K-means algorithm on BCW dataset

MPSO, CPSO and PSO algorithms do not show significant
differences based on the Nemenyi test, but the Wilcoxon
test found insignificant differences only between MCUPSO,
CPSO and MPSO. If we check the PSO algorithm com-
pared to MCUPSO, MPSO and CPSO algorithms, then
we can observe that the Wilcoxon test detected significant
differences only between PSO and MCUPSO algorithms.
MPSO, CPSO, MCUPSO algorithms based on Friedman
mean rank and the Wilcoxon post-hoc test work the best
for this dataset.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

40



Table 7: Detected significant statistical differences
with the Wilcoxon test with qα = 0.05 on BCW
dataset

KM PSO CLPSO OVCPSO MPSO CPSO MCUPSO

KM ∞ + + + + + +

PSO / ∞ + + ∼ ∼ +

CLPSO / / ∞ + + + +

OVCPSO / / / ∞ + + +

MPSO / / / / ∞ ∼ ∼
CPSO / / / / / ∞ ∼
MCUPSO / / / / / / ∞

In Table 8, we can see that two algorithms, namely MPSO
and CPSO algorithms, obtained the best cluster centers for
classification on the Wine dataset. We can see that the
MPSO algorithm got the best and the worst clusters cen-
ters, and the best median and standard deviation values on
this dataset. Table 8 is showing that not only the MPSO
algorithm but CPSO and CLPSO algorithms got the best
clusters centers for classification. Best median values where
obtained with MPSO, OVCPSO and CLPSO algorithms.
The Friedman test gave us the statistic value of 58.06224

Table 8: Basic statistics of used algorithms for 51
runs on Wine dataset

KM PSO CLPSO OVCPSO MPSO CPSO MCUPSO

mean 0.3151 0.3111 0.2977 0.2970 0.2930 0.3122 0.3162

std 0.0490 0.0515 0.0519 0.0495 0.0457 0.0594 0.0510

min 0.2222 0.2037 0.1851 0.2037 0.1851 0.1851 0.2407

median 0.3148 0.3148 0.2962 0.2962 0.2962 0.3148 0.3148

max 0.4814 0.4259 0.4259 0.4074 0.3703 0.4444 0.4629

with p-value of 1.1131e−10. For qα of 0.05 we can say that
the Friedman test detected significant differences between
used algorithms. From the results seen in Table 8 we would
suspect that the MPSO algorithm would have the small-
est mean rank, but the results from Figure 8 show that the
CPSO algorithm has the smallest mean rank. As we can
see from Figure 8 there is no significant differences between
PSO, MPSO, CPSO and MCUPSO algorithms, which can
be confirmed with results collated in Table 9. For the basic
PSO algorithm the Wilcoxon test detected only two signif-
icant differences. As seen from Figure 8 the CPSO algo-

Table 9: Detected significant statistical differences
with the Wilcoxon test with qα = 0.05 on Wine
dataset

KM PSO CLPSO OVCPSO MPSO CPSO MCUPSO

KM ∞ + ∼ + + + +

PSO / ∞ + ∼ ∼ ∼ ∼
CLPSO / / ∞ ∼ + + +

OVCPSO / / / ∞ + + +

MPSO / / / / ∞ ∼ ∼
CPSO / / / / / ∞ ∼
MCUPSO / / / / / / ∞

rithm has the smallest mean rank, but we can not say that

KM PSO CLPSO OVCPSO MPSO CPSO MCUPSO
Algorithm

3

4

5

6

M
ea

n 
ra

nk

Figure 8: Friedman mean ranks and the Nemenyi
post-hoc test with qα = 0.05 for PSO algorithms an
the K-means algorithm on Wine dataset

this algorithm is the winner for this dataset. Because of in-
significant differences between CPSO, MPSO and MCUPSO
algorithms we can say that this three algorithms work best
for for this dataset.

5. CONCLUSIONS
In our work, we used clustering optimization for classifica-
tion. We proposed a new fitness function that has two com-
ponents. The first component is a clustering function that
is used in the K-means algorithm for clusters evaluation and
the second component is a penalty function, which is the
basis for supervised learning. Our proposed fitness function
is a weighted sum of this two components. First component
has weight equal to 0.25 and second component has weight
equal to 0.75. As it turns out, on used datasets, this fitness
function works well. In our work we tried to eliminate initial
clusters defect of the K-means algorithm, which makes the
K-means algorithm converge fast to some local optimum.

One of the options for feature work is to use more func-
tion evaluations with an additional archive, because as we
have seen in our experiments, good solutions can be found
only after 1, 000 function evaluations. Because evolution-
ary computation is a large research area, we would look for
other optimization algorithm. In our work, we did not found
the solution for detecting the number of clusters in dataset.
This is a challenging task for currently known algorithms
and would be a good option for feature work. A multi-
objective optimization algorithm would be a good stating
point for detecting a number of optimal clusters hidden in
data.

6. ACKNOWLEDGMENTS
Authors would like to thank the contributors of nature in-
spired framework for Python, called NiaPy [21], for they
efforts in the development of the framework. The authors
acknowledge the financial support from the Slovenian Re-
search Agency (research core funding No. P2-0041).

7. REFERENCES
[1] A. Chehouri, R. Younes, J. Perron, and A. Ilinca. A

constraint-handling technique for genetic algorithms

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

41



using a violation factor. arXiv preprint
arXiv:1610.00976, 2016.

[2] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine learning
research, 7(Jan):1–30, 2006.

[3] D. Dua and C. Graff. UCI machine learning
repository, 2017.

[4] R. C. Eberhart, Y. Shi, and J. Kennedy. Swarm
intelligence. Elsevier, 2001.

[5] M. Friedman. The use of ranks to avoid the
assumption of normality implicit in the analysis of
variance. Journal of the American Statistical
Association, 32(200):675–701, 1937.

[6] X. Han, L. Quan, X. Xiong, M. Almeter, J. Xiang, and
Y. Lan. A novel data clustering algorithm based on
modified gravitational search algorithm. Engineering
Applications of Artificial Intelligence, 61:1 – 7, 2017.

[7] A. Hatamlou. Black hole: A new heuristic
optimization approach for data clustering. Information
Sciences, 222:175 – 184, 2013. Including Special
Section on New Trends in Ambient Intelligence and
Bio-inspired Systems.

[8] A. Hatamlou, S. Abdullah, and M. Hatamlou. Data
clustering using big bang–big crunch algorithm. In
International Conference on Innovative Computing
Technology, pages 383–388. Springer, 2011.

[9] A. K. Jain. Data clustering: 50 years beyond k-means.
”Pattern Recognition Letters”, 31(8):651 – 666, 2010.
Award winning papers from the 19th International
Conference on Pattern Recognition (ICPR).

[10] J. Kennedy and R. Eberhart. Particle swarm
optimization. In Proceedings of IEEE International
Conference on Neural Networks, volume 4, pages 1942
– 1948 vol.4, 12 1995.

[11] J. J. Liang, A. K. Qin, P. N. Suganthan, and
S. Baskar. Comprehensive learning particle swarm
optimizer for global optimization of multimodal
functions. IEEE Transactions on Evolutionary
Computation, 10(3):281–295, June 2006.

[12] Y. Liu, Z. Qin, Z. Shi, and J. Lu. Center particle
swarm optimization. Neurocomputing,
70(4-6):672–679, 2007.

[13] S. J. Nanda and G. Panda. A survey on nature
inspired metaheuristic algorithms for partitional
clustering. Swarm and Evolutionary Computation,
16:1 – 18, 2014.

[14] P. Nemenyi. Distribution-free multiple comparisons
(doctoral dissertation, princeton university, 1963).
Dissertation Abstracts International, 25(2):1233, 1963.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[16] F. Shahzad, A. R. Baig, S. Masood, M. Kamran, and
N. Naveed. Opposition-based particle swarm
optimization with velocity clamping (ovcpso). In
Advances in Computational Intelligence, pages
339–348. Springer, 2009.

[17] Y. Shi and R. Eberhart. A modified particle swarm
optimizer. In 1998 IEEE International Conference on
Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat.
No.98TH8360), pages 69–73, May 1998.

[18] K. Socha. Ant Colony Optimization for Continuous
and Mixed-Variable Domains. PhD dissertation,
Universite Libre de Bruxelles, 2014.

[19] H. R. Tizhoosh. Opposition-based learning: a new
scheme for machine intelligence. In International
Conference on Computational Intelligence for
Modelling, Control and Automation and International
Conference on Intelligent Agents, Web Technologies
and Internet Commerce (CIMCA-IAWTIC’06),
volume 1, pages 695–701. IEEE, 2005.

[20] H.-C. Tsai. Unified particle swarm delivers high
efficiency to particle swarm optimization. Applied Soft
Computing, 55:371 – 383, 2017.

[21] G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister, and
I. Fister Jr. NiaPy: Python microframework for
building nature-inspired algorithms. Journal of Open
Source Software, 3, 2018.

[22] F. Wilcoxon. Individual comparisons by ranking
methods. In Breakthroughs in statistics, pages
196–202. Springer, 1992.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

42



Hierarchical Routing Algorithm for Industrial Mobile
Robots by Signal Temporal Logic Specifications

[Extended Abstract]

Balázs Csutak
Faculty of Information

Technology and Bionics,
Pázmány Péter Catholic

University
H-1083 Práter u. 50/a,

Budapest, Hungary
csutak.balazs@hallgato.

ppke.hu

Tamás Péni
Systems and Control

Laboratory, Institute for
Computer Science and

Control
H-1111 Kende u. 13-17.,

Budapest, Hungary
peni.tamas@sztaki.mta.hu

Gábor Szederkényi
Faculty of Information

Technology and Bionics,
Pázmány Péter Catholic

University
H-1083 Práter u. 50/a,

Budapest, Hungary
szederkenyi@itk.ppke.hu

ABSTRACT
A two-level route planning algorithm based on model predic-
tive control (MPC) is proposed in this paper for industrial
mobile robots, executing tasks in an environment specified
using the methodology of signal temporal logic (STL). STL
is applied to describe various conditions like collision-free
and deadlock-free operation, followed by the transforma-
tion of the formulas into a mixed integer linear program-
ming (MILP) problem, solved using dedicated software. To
achieve real-time operation, the route planning is divided
into two distinct phases using different underlying vehicle
models. The correctness of the approach is guaranteed by
the applied formal design method.

Categories and Subject Descriptors
[Embedded and cyber-physical systems]: Robotics—
Robotic control ; [Applied computing]: Physical sciences
and engineering—Engineering

Keywords
mobile robots, route planning, signal temporal logic, opti-
mization

1. INTRODUCTION
Optimal route planning based on transport demands is an
intensively investigated topic in engineering fields. Depend-
ing on the applied model and assumptions, the computa-
tional complexity of such tasks and the effectiveness of the
solution moves on a wide scale.

The problem itself generally consists of numerous autonomous
guided vehicles (AGV) moving along given routes in a closed

space (e.g. in an industrial plant), assuming a microscopic
routing environment (i.e., the size of the vehicles is not neg-
ligible compared to the available space). This environment
can be modeled as a directed graph, with only one agent
allowed at a time in a given node or edge [1], which is suit-
able for a physically large setting, but might prove to be
ineffective in a more crowded location. As another possible
approach, the plant can be modeled as a coordinates sys-
tem, in which agents can move freely with the exception of
a number of obstacles or restricted zones.

Some of the solutions concentrate on giving suboptimal but
real-time solution for the problem, using greedy iterative al-
gorithms or heuristics. In the simplest case, the route plan-
ning of the agents is carried out in a completely independent
manner: knowing the location of the obstacles, each agent
computes a path locally, and avoids collision with other vehi-
cles in real-time. This approach however is neither optimal
regarding the completion time of the movements, nor has
any guarantee to prevent situations like a deadlock forma-
tion. More complex solutions feature distributed calcula-
tion, but with a centrally accessible resource (like already
planned paths of the other vehicles) [1, 2].

It is also possible to model route planning tasks as opti-
mization problems [3]. These algorithms are indeed capable
of giving the truly optimal solution regarding completion
time, guarantee the collision-free and deadlock-free opera-
tion on the price of high computational complexity which
might hamper real-time application.

Linear Temporal Logic (LTL) is a formalism originally de-
veloped for the formal design and verification of computer
programs. In essence, LTL extends the set of operators fa-
miliar from Boolean logic with tools to describe time depen-
dencies between the statements (such as ’always’, ’never’,
’eventually’, ’next step’, etc.). Signal Temporal Logic (STL)
further extends the possibilities offered by LTL by introduc-
ing quantitative operators regarding time in LTL formulas.
STL has been successfully used for describing traffic-related
systems, due to its ability to express complex rule sets or
complicated time dependencies [4, 7, 8].

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

43DOI: https://doi.org/10.26493/978-961-7055-82-5.43-47



One of the first results on the successful application of LTL
in vehicle routing is [9], where the computation task is writ-
ten as a network flow problem with constraints. In [10], an
incremental algorithm is given for the complex path plan-
ning of a single robot, where the specifications are given
using LTL. A motion planning method for multiple agents
is presented in [11], where STL is used for describing specifi-
cations, taking into consideration imperfect communication
channels, too.

The above results motivated us to use STL in our work for
route planning. The main novelty of our approach is the
division of the computation into two levels which allows us
to handle a relatively long prediction horizon with a singifi-
cantly reduced computation time.

2. PROBLEM FORMULATION
The problem is to plan and track routes for multiple AGVs,
each of which is assumed to move in a two dimensional closed
space, independently in the x and y directions. All agents
have upper bounds for speed and velocity, respectively. Each
agent has a target point assigned before running the plan-
ning algorithm. The objective for each agent is reaching its
target point in minimal possible time, without colliding with
obstacles or with each other.

Let N be the number of agents. On the low level, we model
the agents as simple mass-points in a two dimensional carte-
sian coordinates system. Therefore, the motion of each agent
can be described in continuous time as two double integra-
tors with acceleration command inputs, resulting in 4N state
variables (coordinates and velocities), and 2N inputs. This
model is discretized in time using a uniform sampling time
ts. Let xi(k) and yi(k) denote the x and y coordinates of the
ith robot at time step k, respectively. The inputs for agent
i at time step k are denoted by uxi(k) and uyi(k) along the
x and y coordinates, respectively.

The borders of the environment, as well as the rectangle-
shaped obstacles can be introduced as simple constraints
for the xi and yi state variables. Let the number of obsta-
cles be M , each obstacle being defined by its lower-left and

upper-right corners (a
(l)
1 , b

(l)
1 ) and (a

(l)
2 , b

(l)
2 ). This means

that avoiding obstacles can be written as a set of linear con-
straints:

{xi < a
(l)
1 or xi > a

(l)
2 or yi < b

(l)
1 or yi > b

(l)
2 , ∀ i, l}

Collision-aviodance between agents is realized using a thresh-
old value δ and the constraints |xi(k) − xj(k)| > δ ∀ i 6=
j. Note that due to the discrete-time model, this thresh-
old must be carefully chosen considering maximum vehicle
speed.

The planning itself is run on a finite time horizon, consisting
of T steps. It is assumed, that all vehicles can reach their
goal state within this time (given a reasonably large T ).
However, the computation should work even if some of them
is not able to fulfil this constraint.

The optimization problem is minimizing the following ob-
jective function:

J(x, u) =

T∑
k=1

N∑
i=1

(|xi(k) − xti| + |yi(k) − yti|), subject to

the collision, obstacle-avoidance and possible additional con-
straints, where xti and yti denote the prescribed target co-
ordinates corresponding to agent i.

3. ONLINE ROUTE PLANNING BY TEM-
PORAL LOGIC CONSTRAINED OPTI-
MIZATION

Based on the problem formulation above, it can be clearly
seen, that solving the routing problem requires at least 4NT
variables, with O(2N2) + O(4NM) constraints, resulting
from vehicle-vehicle collisions and obstacle avoidance respec-
tively. Feasibility of obtaining solution in real-time is highly
dependent on the applied solver, and on the constraints
themselves.

Our experiments showed that the problem scales badly when
the number of agents or the number of obstacles is increased.
To overcome the issue, a two phase planning is proposed.

The double-integrator model is used only in the second phase,
when a O(2 ∗ N2) part of the constraints can be omitted.
Moreover, the second phase can be run individually for all
agents, each having only 4T state variables and only 4M con-
straints resulting from obstacle avoidance (although some
constraints for following the first-phase must be added, as
described below).

3.1 First phase planning
In the first phase, a coarse route is designed with a relatively

large sampling time t
(1)
s to have as short prediction horizon

as possible. Moreover, only the coordinates of the agents
are taken into consideration, and the computed input (ūxi,
ūyi) is the required coordinate change in each direction for
agent i in each time step. This results in simpler dependency
between the input and the desired output, and considerably
reduces the required computation time.

xi(k + 1) = xi(k) + ūxi(k)

yi(k + 1) = yi(k) + ūyi(k)

|ūxi(k)| < K

|ūyi(k)| < K

i = 1...N

where K is an upper bound for coordinate changes which is
determined using the maximum speed of the vehicle and the
sampling time ts.

The description of the rules for such a simple system is
quite straightforward using temporal logic. Given a rect-
angle shaped obstacle as defined above, the STL formula for
avoidance looks like:

©[0,T ]

(
xi < a

(l)
1 or xi > a

(l)
2 or yi < b

(l)
1 or yi > b

(l)
2

)
. For avoiding collisions between the vehicles, we use:

©[0T ] (|yi(t)− yj(t)| > dist or |xi(t)− xj(t)| > dist)

. (Here, the notation © is the so-called always operator,
which means, that the formula must be true in all time in-
stants in the interval [1, T ] - which is the whole time of the
planning in our case.)

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

44



3.2 Second phase planning
The double-integrator model for the agents is used in the
second phase, where we assume, that agent i has a source
and a target point, as well as a set of intermediary route
points Pi = {(xpi, ypi)|p = 1...T − 1} known from the pre-
vious phase. The planning is done using a rolling horizon

approach, using a smaller sampling time t
(2)
s = t

(1)
s /k, k > 1.

In the simplest case this means that at route point p, the
p + 2-th point is set as a target. We use a temporal logic
formula to ensure that the agent will be in the prescribed
proximity of the point p+ 1, and planning is done on a hori-
zon of T2 = 2 · k. This can be easily extended to include
more intermediary route points. This planning step is re-
peated when the agent reaches the route point p+ 1. It can
be shown, that by choosing this ∆ proximity correctly, we
can guarantee, that no collision between the agents can oc-
cur. The concept of the proof is that if the distance threshold
from the first phase is equal to the half of the distance, an
agent can move in the rough plan in one step (δ = K/2), and
we restrict the agents to remain in the ∆ = δ/2 proximity
of the given point for the respective time interval, then the
agents are always located inside different non-overlapping
δ × δ-sized squares. The concept is illustrated in Figure 1.

4. ILLUSTRATIVE EXAMPLE
In order to illustrate the concept, a case study containing
ten agents was carried out. As it is visible in Fig. 2, we
have a 16 × 10 units floorplan, containing 7 obstacles that
must be avoided. The first-phase planning is running on a
40 step long horizon, which means at least 10×40×2 = 800
continuous variables (x and y directions for all agents and
all discrete time points). The number of temporal logic for-
mulas is 10 × 7 (obstacles) + 10 × 9/2 (collisions) = 115,
resulting in approximately 400× 40 constraints for the opti-
mization problem. The exact number of variables in our sim-
ulation (produced by the STL parser) was 10660 continuous
and 33110 integer variables. The solution of the problem on
an average consumer-grade laptop using two processor cores
was 217.7 seconds.

To illustrate the detailed (second-phase) planning, we show
the planned routes and the generated input signals for only
one agent corresponding to obstacle avoidance. The situa-
tion is shown in Fig. 3. Here, we have the first-phase plan
generated for the agents, and we use the second phase com-
putation to calculate the detailed plan. The discretization

time for the second phase was t
(2)
s = t

(1)
s /10, with a horizon

of T = 50 steps. The rough plan is marked by the blue
circles and consists of 5 intermediary points. The detailed
plan is marked by red stars. As it is visible in the figure, the
agent remains in the prescribed proximity of the first-phase
plan. It must be noticed, that the agent correctly avoids
the obstacle’s corner, which was to be hit following directly
the first phase rough route. The input signals (acceleration
commands) generated for the agent are displayed in Fig. 4

5. CONCLUSION
In this paper, we presented a possible way for describing
route planning problems as optimisation problems, using
the formalism offered by signal temporal logic. The plan-
ning phase is divided into two parts: in the first phase,
we use a low-complexity model for creating a rough plan,

11 22 33 44 55

11

22

33

44

55

. < K. < K

< K< K

Figure 1: Distances kept by the agents during the
first and second phase planning

taking into consideration the obstacles and vehicle-vehicle
interactions as well. The algorithm calculates a set of con-
secutive intermediary route points for each agent, ensuring
conflict-free behavior provided that agents are in the given
proximity of the points for the respective time interval. In
the second phase, each agent computes its own path, con-
sidering the points and intervals given in the first phase.
Thus, vehicle-vehicle interactions need not to be checked on
the detailed planning level, only smooth maneuvering and
obstacle avoidance between the points are required.

Acknowledgements
This work has been supported by the research program titled
”Exploring the Mathematical Foundations of Artificial In-
telligence” (2018-1.2.1-NKP-00008). The partial support of
the projects GINOP-2.3.2-15-2016-00002 and EFOP-3.6.3-
VEKOP-16-2017-00002 is also acknowledged. T. Péni is the
grantee of the Bolyai János Research Scholarship of the Hun-
garian Academy of Sciences. The work has been also sup-
ported by the UNKP-19-4-BME-29 New National Excellence
Program of the Ministry of Human Capacities.

6. REFERENCES
[1] Gawrilow, E., Köhler, E. and Möhring, R. and Stenzel, B.

Dynamic Routing of Automated Guided Vehicles in
Real-time (2008). In: Krebs HJ., Jäger W. (eds)
Mathematics – Key Technology for the Future. Springer,
Berlin, Heidelberg DOI: 10.1007/978-3-540-77203-3 12.

[2] B. Csutak, T. Péni and G. Szederkényi. An optimization
based algorithm for conflict-free navigation of autonomous
guided vehicles In Pannonian Conference on Advances in
Information Technology (2019), pp. 90-97.

[3] T. Nishi, M. Ando and M. Konishi. Distributed route
planning for multiple mobile robots using an augmented
Lagrangian decomposition and coordination technique In
IEEE Transactions on Robotics, vol. 21, no. 6, pp.
1191-1200, Dec. 2005.

[4] E. S. Kim, S. Sadraddini, C. Belta, M. Arcak and S. A.
Seshia. Dynamic contracts for distributed temporal logic
control of traffic networks In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Melbourne,
VIC, 2017, pp. 3640-3645.

[5] Raman, V. and Donzé, A. and Maasoumy, M. and Murray,
R. and Sangiovanni-Vincentelli, A. and A Seshia, S. (2014).
Model Predictive Control with Signal Temporal Logic
Specifications In 53rd IEEE Conference on Decision and
Control (2014): 81-87.

[6] A. Donzé and V. Raman. BluSTL Controller Synthesis from

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

45



Signal Temporal Logic Specifications In 1st and 2nd
International Workshop on Applied verification for
Continuous and Hybrid Systems, 2015

[7] S. Coogan and M. Arcak. Freeway traffic control from linear
temporal logic specifications In 2014 ACM/IEEE
International Conference on Cyber-Physical Systems
(ICCPS), Berlin, 2014, pp. 36-47.

[8] N. Mehr, D. Sadigh, R. Horowitz, S. S. Sastry and S. A.
Seshia. Stochastic predictive freeway ramp metering from
Signal Temporal Logic specifications In 2017 American
Control Conference (ACC), Seattle, WA, 2017, pp.
4884-4889.

[9] S. Karaman, and E. Frazzoli. Linear temporal logic vehicle
routing with applications to multi-UAV mission planning.
International Journal of Robust and Nonlinear Control,
21:1372–1395, 2011.

[10] C. I. Vasile, and C. Belta. Sampling-Based Temporal Logic
Path Planning. In Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 4817-4822, 2013.

[11] Z. Liu, J. Dai, B. Wu, and H. Lin. Communication-aware

Motion Planning for Multi-agent Systems from Signal

Temporal Logic Specifications. In Proceedings of the 2017

American Control Conference, 2516-2521, 2017.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

46



Figure 2: Paths created by the coarse first-phase planning for 10 agents
The start and target positions of the agents are marked by stars and diamonds, respectively.

Figure 3: The first- and second phase plans for one agent

Figure 4: Input signals computed for the agent

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

47



https://en.wikipedia.org/wiki/MathWorks


Decolorization of Digital Pathology Images: A Comparative Study 

Krishna Gopal Dhal1, Swarnajit Ray2, Arunita Das3, Iztok Fister Jr.4, Sanjoy Das5

1Dept. of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West   Bengal, India. 

Email: krishnagopal.dhal@midnaporecollege.ac.in 
2Learningmate Solutions Pvt. Ltd., Kolkata, West Bengal, India. Email: swarnajit32@gmail.com 
3Dept. of Information Technology, Kalyani Govt. Engineering College, Kalyani, Nadia, India. Email: arunita17@gmail.com. 
4Faculty of Electrical Eng. and Computer Sc., University of Maribor, Slovenia, Email: iztok.fister1@um.si. 
5Dept. of  Eng. and Technological Studies, University of Kalyani, Kalyani, India, Email: dassanjoy0810@hotmail.com 

ABSTRACT 

The major demerit of color to gray conversion is the loss of 

visually important image features. Digital pathology images are 

treated as the gold Standard for detection of various diseases, 

especially for the different types of cancer. Digital pathology 

images are color in nature, i.e. each pixel is a color vector 

represented by three values. Thus, the processing of these images 

requires high computational time. If these color images are 

converted into one dimensional gray images, then processing time 

can be reduced, which will help the Computer-Aided Diagnosis 

(CAD) system significantly for  accurate classification and 

detection of different types of diseases. Therefore, this study 

focuses on the fast conversion of color digital pathology images 

into gray images. In order to do that, seven well established color 

to gray conversion, techniques have been employed for producing 

gray images with salient features. The outcomes have been 

validated visually and numerically.   

KEYWORDS 
Digital Pathology Images, Decolorization, Color to Gray 

Conversion, Gray Scale, RGB2GRAY.  

1. Introduction

Computer assisted pathology and microscopy image analysis, 

assist  the decision making for automated disease diagnosing, as 

they provide digital images related to certain kinds of disease 

using Computer-Aided Diagnosis (CAD) systems, which 

facilitates quantitative and qualitative medical results with a high 

throughput processing rate [1, 2, 3]. At present, automated 

medical diagnosing has  attracted the attention of several 

pathologists in research and clinical practice , since CAD systems 

reduce human error, false positive results and time complexity, 

while pathology imaging provides more accurate results, faster 

and reproducible image analysis. Digital pathology images are 

stored as high-resolution color images, i.e. each pixel is 

represented as a three-dimensional vector, namely R, G, and B, 

and, due to that, they are of the order M×N×3, where M and N 

indicate the number of row and column respectively. Therefore, 

several image processing techniques, like enhancement, 

segmentation, require high computational effort. In order to 

overcome this issue, if these high dimensional images can be 

reduced to the order M×N with each pixel as a single scalar value, 

then the computation for applying these techniques reduces 

drastically. Another benefit is that this conversion facilitates the 

application of single-channel algorithms on color images, like 

Canny operator for edge detection [4]. In literature, this dimension 

reduction is considered as color to gray scale image conversion, or 

decolorization. 

Several color to gray scale conversion techniques have been 

developed by following the human perception of brightness and 

contrast, and they proved their efficiency in the traditional color 

image decolorization field [5-12]. However , the utilization of 

decolorization techniques in the Digital Pathology domain is a 

little bit different.  Information loss minimization for a specific 

image is the main aspiration. Therefore, this study utilizes these 

developed color to gray conversion techniques for the 

decolorization of pathology images to prove their efficacy in this 

medical image domain. All color to gray conversion techniques 

are categorized into three classes, namely Local, Global, and 

Hybrid. In local processing based techniques [5, 6], the same 

color pixel within an image can be mapped into different gray 

values, depending on the local distributions of colors, which is 

generally not desired. Compared to local, global processing 

methods [4, 7-12] are able to produce natural looking images. 

Several hybrid methods have  also been developed by considering 

global and local contrast or features for conversion [13, 14], but, it 

is also true that local processing and utilization of local 

information based statistics take large computational time. 

Therefore, this letter considers only global processing based 

techniques [4, 7-12], which are discussed in the next Section.  

The paper is organized as follows: Section 2 discusses 

all the global color to gray conversion techniques. Section 3 

describes the experimental results and the paper is concluded in 

section 4. 

2. Decolorization Models

The existing global decolorization, methods have been presented 

in this Section.  

2.1. MATLAB Procedure (rgb2gray) 

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

49DOI: https://doi.org/10.26493/978-961-7055-82-5.49-52



Generally, global mapping techniques convert a color image 

(𝑅𝐺𝐵) into a grayscale image (𝐺) by a linear weighting of the 𝑅, 

𝐺 , and 𝐵  channels, i.e. G(i, j) = ∑ 𝑤c𝑅𝐺𝐵c (i, j),c=R,G,B where

∑ 𝑤𝑐 =  1c=R,G,B . Here, the three linear weighting parameters w,

should be estimated on the basis of some models. 

In the MATLAB (Matrix Laboratory) software, developed by 

MathWorks [11], an RGB image converts into gray-scale by the 

following weighting formula: 

𝐺 = 0.2989 × 𝑅 + 0.5870 × 𝐺 + 0.1140 × 𝐵  (1) 

2.2. Color2Gray 

This decolorization model was  developed by Gooch et. al. in 

2005 [7]. The proposed model uses CIELAB color space, and 

maintains color contrast between pixel pairs by optimizing an 

objective contrast function. 

2.3. Real-Time Contrast Preserving 

Decolorization (RTCPD) 

It has  previously been said that G(i, j) = ∑ 𝑤c𝑅𝐺𝐵c (i, j)c=R,G,B . In

2009, Lu et. al. [8] also developed a decolorization model called 

Real-Time Contrast Preserving Decolorization (RTCPD) by 

optimizing the linear weights 𝑤c by minimizing the  gradient error

energy function. 

2.4. Gradient Correlation Similarity for 

Decolorization (GcsDecolor) 

The GcsDecolor [9] model was proposed by Liu et. al. in 2015, 

which is the variant of RTCPD. Gradient correlation similarity 

(Gcs) measure were utilized in GcsDecolor. Two variants of 

GcsDecolor have been developed by the authors. The first one is 

iterative GcsDecolor and the other is discrete searching 

GcsDecolor. Discrete searching based GcsDecolor is utilized here, 

due to its simplicity and run time efficiency. 

2.5.  Semi-Parametric Decolorization 

(SPDecolor) model 

This Semi-Parametric Decolorization technique is another variant 

of RTCPD proposed by Liu et. al. in 2016 [4]. SPDecolor has the 

strength of the parametric contrast preserving method and the 

non-parametric rgb2gray method. 

2.6. Color to Gray Conversion by Correlation 

(CorrC2G) 

The CorrC2G [10] technique was proposed by Nafchi et. al. in 

2017, where the linear weighting parameters (w)  have been 

estimated using the correlation information between each band of 

RGB image and a contrast image. This method also does not 

require any edge information or any optimization. 

2.7. Parametric ratio-based method for 

efficient contrast preserving 

decolorization (PrDecolor) 

This PrDecolor was proposed by Xiong et. al. in 2018 [12]. The 

method is a contrast preserving multivariate parametrical 

constraint based decolorization model. 

3. Experimental Results

The experiment was  performed over 40 color hematopathology 

and histopathology images with MatlabR2016a and a Windows-

10 OS, x64-based PC, RIZEN CPU, 3.6 GHz with 8 GB RAM. 

The proposed methods were tested on images taken from the ALL 

IDB dataset [15] and UCSB  Bio-Segmentation  Benchmark 

dataset   [16, 17]. 

 (a)  (b) 

Fig.1. (a) Original image of Acute Lymphoblastic Leukemia 

(b) Original image of Breast histopathology

The decolorization efficacy of the proposed models has been 

judged by computing three quality parameters, namely the Color-

to-Gray Structural Similarity (C2G-SSIM) index (C2G-SSIM) 

[10, 20], Edge based Contrast Measure (EBCM) [18], and Entropy 

[19]. C2G-SSIM [10, 20] is a color to gray evaluation metric 

based on the popular image quality assessment metric SSIM. It 

demonstrates higher correlation with human subjective 

evaluations.  It is expected that the efficient color to gray 

conversion technique preserves the edge information. Therefore, 

EBCM has been utilized to measure the edge information, as it is 

less sensitive to digitization effects and noise.  Entropy [19] value 

reveals the information content in the image. If the distribution of 

the intensities is uniform, then it can be said that a histogram is 

equalized and the entropy of the image is more. 

(a) (b) 

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

50



(c) (d) 

(e) (f) 

Fig.2. Results of decolorizarion 

for Fig.1(a): (a) rgb2gray [11] (b) 

Color2Gray [7] (c) RTCPD [8] 

(d) GcsDecolor [9] (e) SPDecolor 

[4] (f) CorrC2G [10] (g) 

PrDecolor [12]. 

(g) 

(a) (b) 

(c) (d) 

(e) (f) 

Fig.3. Results of decolorizarion 

for Fig.1(b): (a) rgb2gray [11] 

(b) Color2Gray [7] (c) RTCPD 

[8] (d) GcsDecolor [9] (e) 

SPDecolor [4] (f) CorrC2G [10] 

(g) PrDecolor [12]. 

(g) 

Table 1. Average Quality parameters over 40 images 

Method C2G-SSIM EBCM Entropy 

rgb2gray [11] 0.8912 183.24 7.19 

Color2Gray [7] 0.8314 172.13 6.98 

RTCPD [8] 0.8914 183.57 7.19 

GcsDecolor [9] 0.8598 174.90 7.11 

SPDecolor [4] 0.9030 187.38 7.23 

CorrC2G [10] 0.9032 187.98 7.25 

PrDecolor [12] 0.9035 188.74 7.25 

/* Best results obtained are given in bold*/ 

Table 2. Computational time of decolorization methods 

Method Fig.1(a) 

257x257 

Fig.1(b) 

896x768 

rgb2gray [11] 0.0086 0.0221 

Color2Gray [7] 157.01 263.23 

RTCPD [8] 0.0721 0.0636 

GcsDecolor [9] 0.0397 0.0723 

SPDecolor [4] 0.0942 1.0967 

CorrC2G [10] 0.0187 0.0385 

PrDecolor [12] 2.9678 27.8316 

/* Best results obtained are given in bold*/ 

3.1. Analysis of Experimental Results 

Performance analysis of the considered seven decolorization 

models was performed by using three image quality parameters 

and computational time. Figs. 2 and 3 demonstrate the outcomes 

of the seven decolorization models over pathology images, 

represented as Fig. 1. Values of the quality parameters and 

computational times are given in Tables 1 and 2 respectively. 

Visual analysis of  Figs. 2 and 3 shows clearly that SPDecolor [4], 

CorrC2G [10], and PrDecolor [12] produce better outcomes 

compared to other decolorization methods. However, when we 

compare these methods based on quality parameters, it can be 

seen that PrDecolor [12] outperforms the other methods. 

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

51



SPDecolor [4] and CorrC2G [10] provide nearly the same results 

as PrDecolor [12], as their corresponding numerical values of the 

quality parameters are almost the  same. It can also be seen that 

these three methods, namely, SPDecolor [4], CorrC2G [10], and 

PrDecolor [12] outperform the other four methods significantly in 

terms of quality parameters. When we consider computational 

time, it can be seen that the MATLAB based rgb2gray [11] 

method is the best method. However, among the SPDecolor [4], 

CorrC2G [10], and PrDecolor [12] methods, CorrC2G is 

associated with the lowest computational time.  

4. Conclusion

This paper presents a comparative study among seven existing 

decolorization methods in the case of digital pathology images. 

The visual and decolorization quality parameters prove clearly 

that PrDecolor [12], proposed by Xiong et. al., provided the best 

outcomes compared to the other six methods. Computational time 

shows that the MATLAB based rgb2gray method outperformed 

the others,  although CorrC2G [10] produced nearly the same 

outputs as the  PrDecolor [12] method, but within the second less 

computational time. One challenging future direction of this study 

can be the application of nature-inspired optimization algorithms 

to set the parameters of the parametric decolorization methods by 

considering different objective functions.  

REFERENCES 

1) Gurcan, M. N., Boucheron, L. E., Can, A., Madabhushi, A., 

Rajpoot, N. M., & Yener, B. (2009). Histopathological image

analysis: A review. IEEE reviews in biomedical engineering, 2, 

147-171. 

2) Irshad, H., Veillard, A., Roux, L., & Racoceanu, D. (2014). 

Methods for nuclei detection, segmentation, and classification 

in digital histopathology: a review—current status and future 

potential. IEEE reviews in biomedical engineering, 7, 97-114. 

3) Hinojosa, S., Dhal, K. G., Elaziz, M. A., Oliva, D., & Cuevas, 

E. (2018). Entropy-based imagery segmentation for breast 

histology using the Stochastic Fractal 

Search. Neurocomputing, 321, 201-215.

4) Liu, Q., Liu, P. X., Wang, Y., & Leung, H. (2016). 

Semiparametric decolorization with Laplacian-based perceptual 

quality metric. IEEE Transactions on Circuits and Systems for 

Video Technology, 27(9), 1856-1868.

5) Neumann, L., Čadík, M., & Nemcsics, A. (2007, June). An 

efficient perception-based adaptive color to gray

transformation. In Proceedings of the Third Eurographics 

conference on Computational Aesthetics in Graphics, 

Visualization and Imaging (pp. 73-80). Eurographics 

Association.

6) Smith, K., Landes, P. E., Thollot, J., & Myszkowski, K. (2008, 

April). Apparent greyscale: A simple and fast conversion to

perceptually accurate images and video. In Computer Graphics 

Forum (Vol. 27, No. 2, pp. 193-200). Oxford, UK: Blackwell 

Publishing Ltd.

7) Gooch, A. A., Olsen, S. C., Tumblin, J., & Gooch, B. (2005, 

July). Color2gray: salience-preserving color removal. In ACM 

Transactions on Graphics (TOG) (Vol. 24, No. 3, pp. 634-639). 

ACM. 

8) Lu, C., Xu, L., & Jia, J. (2012, November). Real-time contrast 

preserving decolorization. In SIGGRAPH Asia 2012 Technical 

Briefs (p. 34). ACM.

9) Liu, Q., Liu, P. X., Xie, W., Wang, Y., & Liang, D. (2015). 

GcsDecolor: gradient correlation similarity for efficient contrast 

preserving decolorization. IEEE Transactions on Image 

Processing, 24(9), 2889-2904. 

10) Nafchi, H. Z., Shahkolaei, A., Hedjam, R., & Cheriet, M. 

(2017). CorrC2G: Color to gray conversion by

correlation. IEEE Signal Processing Letters, 24(11), 1651-1655. 

11) MATLAB and Image Processing Toolbox Release 2012b, The

MathWorks, Inc., Natick, Massachusetts, United States.

12) Xiong, J., Lu, H., Liu, Q., & Xu, X. (2018). Parametric ratio-

based method for efficient contrast-preserving

decolorization. Multimedia Tools and Applications, 77(12), 

15721-15745. 

13) Du, H., He, S., Sheng, B., Ma, L., & Lau, R. W. (2014). 

Saliency-guided color-to-gray conversion using region-based

optimization. IEEE Transactions on Image Processing, 24(1), 

434-443.

14) Jin, Z., Li, F., & Ng, M. K. (2014). A variational approach for 

image decolorization by variance maximization. SIAM Journal 

on Imaging Sciences, 7(2), 944-968.

15) Labati, R. D., Piuri, V., & Scotti, F. (2011, September). All-

IDB: The acute lymphoblastic leukemia image database for 

image processing. In 2011 18th IEEE International Conference

on Image Processing (pp. 2045-2048). IEEE.

16) Dhal, K. G., Ray, S., Das, S., Biswas, A., & Ghosh, S. Hue-

Preserving and Gamut Problem-Free Histopathology Image

Enhancement. Iranian Journal of Science and Technology, 

Transactions of Electrical Engineering, 1-28. 

17) Dhal, K. G., Fister Jr, I., Das, A., Ray, S., & Das, S (2018) 

Breast Histopathology Image Clustering using Cuckoo Search

Algorithm. StuCoSReC. 5th Student Computer Science

Research Conference, 47-54.

18) Beghdadi, A., & Le Negrate, A. (1989). Contrast enhancement 

technique based on local detection of edges. Computer Vision, 

Graphics, and Image Processing, 46(2), 162-174. 

19) Dhal, K. G., Ray, S., Das, A., & Das, S. (2018). A Survey on

Nature-Inspired Optimization Algorithms and Their 

Application in Image Enhancement Domain. Archives of 

Computational Methods in Engineering, 1-32. 

20) Ma, K., Zhao, T., Zeng, K., & Wang, Z. (2015). Objective

quality assessment for color-to-gray image conversion. IEEE

Transactions on Image Processing, 24(12), 4673-4685. 

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

52



Solving multi-depot vehicle routing problem 
with particle swarm optimization 

Matic Pintarič 
University of Maribor, Faculty 
of Electrical Engineering and 

Computer Science 
Koroška cesta 46 
Maribor, Slovenia 

matic.pintaric@student.um.si 

Sašo Karakatič 
University of Maribor, Faculty 
of Electrical Engineering and 

Computer Science 
Koroška cesta 46 
Maribor, Slovenia 

saso.karakatic@um.si 

ABSTRACT
Multi-depot vehicle routing problem (MDVRP) is an optimization 
problem with practical real-world applications in the commercial 
transportation sector. It deals with the optimization of the time 
and cost of the transportation of goods from and to customers 

from numerous predefined serving depots. The multi-depot variant 
adds constraints of multiple serving depots and variable customer 
serving capacity and is a NP hard problem. In this paper, we 
present an application of Particle Swarm Optimization (PSO) for 
continuous optimization to MDVRP, where nature-inspired 
optimization framework NiaPy is used. As MDVRP is a discreet 
optimization problem, but NiaPy is suited to work only with 
continuous optimization problems, a transformation with the 
repairing mechanism must be used. Our proposed approach is 

presented in detail and is tested on several standard MDVRP 
benchmark sets to provide a sufficient evidence of usability of the 
approach. 

Keywords
Multi-depot Vehicle Routing Problem, Continuous optimization, 

Particle Swarm Optimization 

1. INTRODUCTION
Optimization is a daily problem we face with in an increasing 
number of different logistics services, such as for example mail 
delivery, passenger transportation and other transportation of 

goods [1], [2], [4]. Because solving such problems is - due to 
restrictions on the route often quite difficult, we mostly rely on 
computer intelligence. By this we mean different algorithms that 
have some heuristics rules, which result in good solutions. They 
are classified as metaheuristic algorithms and often also referred 
to as nature-inspired or evolutionary algorithms (EA) [6], [9]. 

In order to execute the experiment of a comparison between 
different EA, we firstly developed a system that allows 

application of any EA to the vehicle routing problem (VRP). Then 
we tackled the VRP using five different evolutionary algorithms, 
which are genetic algorithm (GA), evolution strategy (ES), 
differential evolution (DE), particle swarm optimization (PSO) 
and harmony search (HS). Considering the obtained results, we 
decided to pay more attention to the PSO algorithm. 

PSO is a popular algorithm for solving many complex 
optimization problems, including routing problems. In 2008 

Mohemmed et al. [16] used PSO for simple routing problem with 
custom priority-based encoding and heuristic operator to prevent 
loops in the path construction. Next in 2009, Ai and 
Kachitvichyanukul [17] presented PSO with multiple social 
structures to solve VRP with simultaneous pickup and delivery. 

Yao et al. [18] proposed custom particle swarm optimization 
algorithm for carton heterogeneous vehicle routing problem. 
Kumar et al. [19] proposed a PSO for vehicle routing problem 
with time window constraint. More recently, Norouzi et al. [20] 
extended VRP with time window problem with additional fuel 
consumption constraint and solved the problem also with PSO. 
All these approaches treat routing problem as a discreet problem. 
As we used optimization framework, which only works with 
continuous optimization problem, the approaches from the 

referenced papers could not be used and a transformation was 
necessary. 

The remaining of the paper is structured as follows. Second 
section presents and formulates MDVRP and PSO. Next section 
presents our proposed approach and its implementation with 
NiaPy framework. Fourth section presents the results of the 
experiment of the proposed approach on the standard benchmark 
sets. Last section discusses the results of the experiments and 

finishes with the concluding remarks. 

2. SOLVING MDVRP
Logistic companies and other carriers, tasked with transporting or 
picking up shipments, face with route optimization on a daily 
level. The well-optimized route, taken by their fleets of vehicles, 

means saving fuel and thus reducing overall daily cost. From this 
we can see that similar scenarios are present in in everyday life 
and present a problem worth solving well. 

The described problem is called VRP and was first addressed by 
George Dantzig and John Ramser in 1959, as a solution to 
optimize fuel delivery. It is a NP hard combinatorial optimization 
problem, generalized from travelling salesman problem, so there 
is no polynomial time solution known to it [1], [3]. The result of 

the problem is the optimal set of routes for multiple vehicles, 
transporting goods to or from customers, subject to restrictions 
along the routes. We also need to keep in mind that only one 
vehicle can visit specific customer at a time [1], [7].  

Over time, different classifications of the problem have formed 
due to differences in constraints. The most common versions of 
the problem are VRP with capacity constraints (CVRP), multi-
depot VRP (MDVRP) and VRP with time windows constraints 

(VRPTW). In addition, just about every problem classification 
also has a certain distance limit of the individual vehicle [1], [4]. 

We focused on solving MDVRP classification of the problem, 
which is also less frequently referred to as multi-depot capacitated 
vehicle routing problem (MDCVRP) [4]. The version of the 
problem, in addition to multiple customers, consists of multiple 
depots and thus more predefined vehicles - each vehicle can carry 

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

53DOI: https://doi.org/10.26493/978-961-7055-82-5.53-56



a certain payload, travel a certain distance and must eventually 
return to its starting depot [3], [11]. If any of the restrictions is 
violated, penalty function is used to punish the vehicle with a 
certain mark-up value. Because MDVRP is represented as a 
directed graph, every node of customer and depot has its own x 

and y coordinate pair [4], [5]. When looking for a solution to the 
problem, we usually divide it into three phases, collectively 
referred to as decision making or decision hierarchy in MDVRP. 
We call them the merging phase, the routing phase and the 
scheduling phase. In the first phase, we try to allocate customers 
to the individual depots according to the distance, which is present 
between them. The second phase, with previously divided 
customers, draws up several routes, which vehicles will take. 

After that, each path is sequenced in the third phase [3], [11]. 

Figure 1 is an example of MDVRP problem, where letters A and 
B represent depots or vehicles with a maximum capacity of 10 
units of weight, and circles with numbers represent different 
customers. There are four paths between depots and customers, 
based on genotype numbers that are converted to phenotype 
numbers by the first conversion method. The routes were 
determined according to the previously mentioned MDVRPs 

decision hierarchy. 

2.1 Particle Swarm Optimization for MDVRP 
The system we developed for experiment purposes, supports 

importing any EA from the library or microframework called 
NiaPy. It was developed by researches from the Faculty of 
Electrical Engineering and Computer Science and the Faculty of 
Economics and Business from University of Maribor. Main 
purpose for developing the framework was lack of easy and fast 
use of EA, since the own implementation of a single algorithm is 
often difficult and time-consuming. The library architecture is 
divided into two parts, which we call algorithms and benchmarks. 

In addition to the developed normal EA versions, we can also find 
hybrid variants, such as hybrid bat algorithm and self-adaptive 
differential evolution algorithm. The framework supports EA 
startup and testing with predefined and generated comparisons, 
while also allowing the export of results in three different formats, 
which are LaTeX, JSON and Excel [13].  

Although some similar frameworks for managing nature-inspired 
algorithms already exist, NiaPy differs mainly in minimalism and 
ease of use. Its main functions are weak coupling, good 
documentation, user friendliness, fair comparison of algorithms, 
quick overview of results and friendly support community. NiaPy 

project is designated as open source and licensed under an MIT 
license. Because the framework is developed in Python 

programming language, installation is possible on all systems, 
which have the support for the language and installed PIP package 
manager. Due to further development, new algorithms are being 
added to the framework and the previously implemented 
algorithms are being further improved [13]. 

One of the algorithms implemented in NiaPy is also PSO, which 
is a population stochastic optimization algorithm and belongs to 

the EA group. The algorithm, which is based on the behavior of 
the swarms of animals such as fish and birds was first developed 
by James Kennedy and Russel Eberhart in the mid-90s of the 20th 
century. It was created as a by-product of the desire to graphically 
represent various flight patterns of animals [6], [8], [14], [15]. 

The PSO population is referred to as a swarm and instances inside 
of it flying particles, which are constantly moving inside of a 
hyperdimensional search space. The position between particles is 
determined with social-psychology tendency to be better and to 
imitate other, closer instances [6], [8]. Each particle is moving 
with its own speed, knows its previous locations and never goes 

extinct, because there is no selection, mutation or recombination 
[10]. Velocity is changed in every generation/iteration. For 
changing velocity, we have three different parts, namely previous 
velocity, cognitive component and social component 

First component represents the memory of the previous direction 
motion and prevents the current flight direction from drastically 
changing. Second component expresses the performance of the 
current particle with respect to past results. Lastly, third 
component expresses the performance of the current particle with 
respect to some group of particles or neighbors around it [8]. 

During the operation, we need to store some other information 
like information about the best found location of each particle 
(pbest), information about the best found location of the currently 
selected part of the swarm (lbest) and information about the best 

found location of the particle of any swarm (gbest). When finding 
new top locations, current values need to be updated [6], [8]. The 
PSO algorithm uses fitness function for guidance of the search 
over the search space. When the stopping condition is meet, 
algorithms returns global best solution found [10]. 

3. IMPLEMENTATING PSO FOR MDVRP
For the purpose of the experiment we used programming language 
Python to develop a system, which allows application of any EA 
from NiaPy library to the different MDVRP examples. The 
system can handle CSV cases of VRP made by Cordeau [12]. 

The system consists of several different classes, one of which is 
class Evaluation, which is responsible for solving the problem. In 
the class we firstly convert given genotype from imported EA to 
an appropriate phenotype, which can be then used to tackle the 
problem. First genotype to phenotype conversion assigns 
ascending index number to each gene, according to its value in the 

array. Second conversion assigns genes, representing nodes or 
customers, to specific vehicles based on the value scale, made of 
number of depots. 

The fitness function of the program itself is quite simple, since it 
only adds up all the paths made to the total distance. This then 
represents the fitness value of the current instance. It is also 
important to add penalty to the result, if solution violated any of 
the limitations of the MDVRP. This is done by checking the limits 
during the program operation and in case of a violation, send the 
current result into the penalty function, which then adds a certain 
distance unit to the distance already completed. 

Figure 1. MDVRP example. 

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

54



Another important class is Graph, which is responsible for 
drawing different graphs and connecting nodes of customers and 
depots on it with paths. Each customer and depot object have its 
own coordinate pair x and y, which is then plotted on a graph and 
connected to paths, obtained from the current result object. The 

final graph thus illustrates all the paths made by vehicles between 
all the customers and depots. The class can also draw a final bar 
graph of all fitness values across generations, received through the 
objects of all solutions. Image Class on the other hand, captures 
an image from a drawn graph and saves it to the appropriate 
directory. It can also use previously stored images to generate 
animated gifs that show the composition of the found route. 

The program itself starts in its main function, where we specify 
desired parameters, such as population size, number of 
generations to be made, number of instances inside one 
generation, seed value and genotype to phenotype conversion. 

Results are displayed on the console at the end of the solving. 

4. RESULTS OF THE EXPERIMENT
The experiment we conducted was performed on five MDVRP 
cases and with five competitive evolutionary algorithms (Particle 
Swarm Optimization PSO, Evolutionary Strategy ES, Genetic 

Algorithm GA, Differential Evolution DE and Harmony Search 
HS), using settings of 10 generations, 5 instances and 20 units of 
distance as the penalty value. Each of five test cases was run with 
a random seed value between 1.000 and 10.000 and with first 
genotype to phenotype conversion. Unfortunately, the testing was 
only performed once due to poor hardware capabilities, which 
were processor Intel Core i5-6267U 3.300Ghz, graphic card Intel 
Iris Graphics 550, Kingston 8Gb RAM and Liteon 250Gb SSD. 

The experiment was performed on the Linux operating system 
Ubuntu 18.04. 

The exact NiaPy algorithms, which were used in the testing are 

GeneticAlgorithm for GA, EvolutionStrategyMpL for ES, 
DifferentialEvolution for DE, ParticleSwarmAlgorithm for PSO 
and HarmonySearch for HS. Settings of individual evolutionary 
algorithm were left at default values from the NiaPy framework. 

When testing on the first and simplest example of the problem 
pr00 (2 depots/vehicles and 10 customers), PSO fund the fourth 
best route, which is not exactly good. It was overtaken by all the 
algorithms except the ES, which achieved an even worse fitness 
result. Comparing on the execution time of the algorithms, the 
PSO achieved the best value, although it was quite like the DE 
and HS values. All the results described are shown in Table 1. 

Table 1. Test results of solving the example pr00  

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 688.02 168.59 

ES 774.52 155.93 

DE 711.88 148.61 

PSO 749.02 148.43 

HS 679.10 148.78 

GA achieved the best fitness value in solving the second MDVRP 
case pr04 (4 depots/vehicles and 192 customers). Again, the PSO 
found the fourth best route with 13603.86 units of distance, and 
the worst path was found by the ES. This time, PSO solved the 
problem with the second fastest time, as it was overtaken by the 
DE for only one second. Results are shown in Table 2. 

Table 2. Test results of solving the example pr04 

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 13282.01 3906.96 

ES 13640.05 3808.14 

DE 13476.95 3713.49 

PSO 13603.86 3714.37 

HS 13573.96 3865.54 

PSO achieved the second-best fitness value when solving the third 
MDVRP case - pr08 (6 depots/vehicles and 144 customers), 

which is interesting because the example was a bit easier that he 
previous one. It also solved the problem as the fastest 
optimization algorithm of all tested. Overall, the algorithm proved 
to be a good choice for solving the specific case. Test results are 
recorded in Table 3. 

Table 3. Test results of solving the example pr08 

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 13282.01 3906.96 

ES 13640.05 3808.14 

DE 13476.95 3713.49 

PSO 13603.86 3714.37 

HS 13573.96 3865.54 

The fourth MDVRP case pr14 (4 depots/vehicles and 192 
customers) was similar in complexity to the second, but with one 
depot less. PSO solved the problem well again, with its fitness 

result reaching second place, and ES reaching last place. With 
3709.32 seconds, PSO solved the problem fastest once again. All 
the results can be seen in Table 4. 

Table 4. Test results of solving the example pr14 

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 13723.88 3896.00 

ES 13885.56 3732.49 

DE 13494.85 3755.60 

PSO 13500.67 3709.32 

HS 13873.96 3950.66 

The toughest test case pr20 (6 depots/vehicles and 288 customers) 
was with 21085.43 units of distance best resolved by PSO – the 
rest of the algorithms were left behind by about 200 units of 
distance or more. It achieved the third-best computing time, and 
interestingly GA achieved first, although its fitness value wasn’t 

very good. All the test results are shown in Table 5. 

Table 5. Test results of solving the example pr20 

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 21610.55 7341.09 

ES 21397.89 7345.13 

DE 21224.04 7487.69 

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

55



PSO 21085.43 7461.45 

HS 21293.09 7656.94 

If we look at Table 6, we can see the rankings of the PSO 

algorithm in fitness scores and runtime relative to the other 
algorithms. The PSO reached an average of 2.6 for fitness 
rankings and 1.6 for the runtime, and thus solved MDVRP cases 
the best of all the tested algorithms. It handled more difficult cases 
better but achieved the fastest resolution times for all of the 
MDVRP examples. 

We ran the test cases again with second conversion of genotype to 
phenotype but did not get any different results – all fitness scores 
and running times have overall deteriorated. 

Table 6. The PSO algorithm ranks 

Order of 

place 
pr00 pr04 pr08 pr14 pr20 

Fitness 4 4 2 2 1 

Run time 1 2 1 1 3 

5. CONCLUSIONS
In this paper we present the application of particle swarm 
optimization algorithm with the usage of NiaPy optimization 
framework on the multi-depot capacitated vehicle routing 
problem. Our approach differs from the similar relevant 

approaches in the way we represent the optimization problem. In 
the literature it is normal to treat routing problems as discreet 
optimization problems. As this was not possible with the usage of 
NiaPy optimization framework, we presented a method on how to 
solve MDVRP as the continuous optimization problem. 

The proposed method was tested on several standard MDVRP 
benchmark sets and the results of PSO were compared with 
several evolutionary algorithms. The results of the experiment 

show that PSO of continuous optimization is a viable and 
competitive method for solving MDVRP, especially in the speed 
of the optimization – it was the fastest in three cases out of five 
sets. Our proposed PSO reached the best (shortest) route in only 
one case and it resulted with second shortest routes in two other 
cases. Thus, we can conclude that PSO can effectively solve 
MDVRP problem with competitive solutions in fastest run times 
out of all five included algorithms. 

Future work includes the implementation of advanced PSO 
operators from the referenced literature and customizing them for 
the continuous optimization. Also, there are numerous other VRP 
variants, which should be tested with our proposed approach. 

6. ACKNOWLEDGMENTS
The authors acknowledge financial support from the Slovenian 
Research Agency (Research Core Funding No. P2-0057). 

7. REFERENCES
[1] W. Cao and W. Yang, “A Survey of Vehicle Routing 
Problem,” MATEC Web Conf., vol. 100, pp. 1–6, 2017.

[2] I.-M. Chao, E. Wasil, and B. L. Golden, “A new heuristic for
the multi-depot vehicle routing problem that improves upon best-
known solutions,” Am. J. Math. Manag. Sci., vol. 13, no. 3–4, pp.

371–406, 1993.

[3] W. Ho, G. T.S. Ho, P. Ji, and H. C.W. Lau, “A hybrid genetic
algorithm for the multi-depot open vehicle routing problem,” Eng.
Appl. Artif. Intell., vol. 21, pp. 401–421, 2008.

[4] S. Karakatič and V. Podgorelec, “A survey of genetic
algorithms for solving multi depot vehicle routing problem,”
Appl. Soft Comput. J., vol. 27, pp. 519–532, 2015.

[5] G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet,
“Classical and modern heuristics for the vehicle routing problem,”
Int. Trans. Oper. Res., vol. 7, pp. 285–300, 2000.

[6] S. Luke, Essentials of Metaheuristics, Second Edi. 2013.

[7] B. M. Baker and M. A. Ayechew, “A genetic algorithm for the
vehicle routing problem,” Comput. Oper. Res., vol. 30, no. 5, pp.
787–800, 2003.

[8] A. P Engelbrecht, “Computational Intelligence.” p. 597, 2007.

[9] A. Shukla, R. Tiwari, and R. Kala, Real Life Applications of
Soft Computing. 2012.

[10] R. Storn and K. Price, “Differential Evolution – A Simple
and Efficient Heuristic for Global Optimization over Continuous
Spaces,” J. Glob. Optim., pp. 341–359, 1997.

[11] P. Surekha, Sumathi, and Dr.S., “Solution To Multi-Depot
Vehicle Routing Problem Using Genetic Algorithms,” World 
Appl. Program., vol. 1, no. 3, pp. 118–131, 2011.

[12] N. and E. O. G. University of Málaga, “Multiple Depot VRP 
with Time Windows Instances,” 2013. [Online]. Available:
http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-with-
time-windows-instances. [Accessed: 31-Aug-2019].

[13] G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister, and I. Fister
Jr., “NiaPy: Python microframework for building nature-inspired 
algorithms,” J. Open Source Softw., vol. 3, p. 613, 2018.

[14] X.-S. Yang, “Firefly algorithms for multimodal
optimization,” Springer-Verlag Berlin Heidelb., vol. 5792 LNCS,
pp. 169–178, 2009.

[15] X.-S. Yang and X. He, “Firefly algorithm: recent advances
and applications,” Int. J. Swarm Intell., vol. 1, no. 1, pp. 36–50,
2013.

[16] Mohemmed, A.W., Sahoo, N.C. and Geok, T.K., 2008.
Solving shortest path problem using particle swarm optimization.
Applied Soft Computing, 8(4), pp.1643-1653.

[17] Ai, T.J. and Kachitvichyanukul, V., 2009. A particle swarm
optimization for the vehicle routing problem with simultaneous
pickup and delivery. Computers & Operations Research, 36(5),
pp.1693-1702.

[18] Yao, B., Yu, B., Hu, P., Gao, J. and Zhang, M., 2016. An 
improved particle swarm optimization for carton heterogeneous
vehicle routing problem with a collection depot. Annals of
Operations Research, 242(2), pp.303-320.

[19] Kumar, R.S., Kondapaneni, K., Dixit, V., Goswami, A.,
Thakur, L.S. and Tiwari, M.K., 2016. Multi-objective modeling of
production and pollution routing problem with time window: A 

self-learning particle swarm optimization approach. Computers & 
Industrial Engineering, 99, pp.29-40.

[20] Norouzi, N., Sadegh-Amalnick, M. and Tavakkoli-
Moghaddam, R., 2017. Modified particle swarm optimization in a
time-dependent vehicle routing problem: minimizing fuel
consumption. Optimization Letters, 11(1), pp.121-134.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

56



Recognizing the subject exposure from the 
EEG signals with artificial neural networks 

Sašo Pavlič 
University of Maribor, Faculty 
of Electrical Engineering and 

Computer Science 
Koroška cesta 46 
Maribor, Slovenia 

saso.pavlic@student.um.si 

Sašo Karakatič 
University of Maribor, Faculty 
of Electrical Engineering and 

Computer Science 
Koroška cesta 46 
Maribor, Slovenia 

saso.karakatic@um.si 

ABSTRACT
The paper presents the analysis of Electroencephalography (EEG) 
brain waves from the Emotiv Insight device with machine learning, 
more specifically neural networks. The captured EEG data 
represents the input data into a machine learning model, which was 

used to determine when and where the required patterns appear. 
The experiment of the developed method of capturing data and 
model usage was carried out by exposing the test subject to the 
alternating selected images and capturing the EEG brain waves 
with the Emotiv Insight device. The captured EEG data served as a 
dataset from which the artificial neural network classification 
model learnt to successfully recognize when a test subject was 
exposed to one type of image and when to another. Convolutional 
and recurrent neural network models were constructed and tested 

to evaluate the performance of recognition of subject exposal. 

Keywords
Electroencephalography, Neural Networks, Machine Learning, 
EEG signals 

1. INTRODUCTION
Recently the analysis of Electroencephalography (EEG) data has 
gained much attention with the development of new measuring 
techniques and the advancement of the machine learning 
algorithms and methods. Simpraga et al. [1] proposed a machine 
learning technique for detection of cholinergic and Alzheimer’s 

disease. Boashash and Ouelha presented a method with machine 
learning for detection of seizures of newborns [2]. Vanegas et al. 
presented a machine learning method for detecting of Parkinson’s 
disease [3]. In the same manner, our research was focused on the 
analysis of EEG data and recognition of subject exposures based on 
the EEG data with machine learning. Recognizing the simple 
subject visual exposures can be used in various fields, from user 
experience, marketing and numerous psychology experiments [4], 

but there is a lack of research demonstrating the usage of neural 
networks for this case. This paper intends to fill in this gap. 

1.1 Overview of EEG 
There are four different EEG frequency bands. 

Delta (0.5−3 Hz) 

The lowest frequency of brain waves moving below 3 Hz occurs 
primarily in deep sleep. This frequency is prevalent in infants up to 
one year of age. It is also present between the 3rd and 4th stages of 
sleep. Delta waves are reduced in very intense concentration and 
when we use our thinking processes very actively. Interest is found 
in individuals who have problems with comprehension and 

learning. They naturally magnify delta waves; when they want to 

gather, they fail to reduce it. It is for this reason that the phenomena 
limit their ability to direct concentration and learning. In this state, 
we find the brain in a locked-in repetitive state, because in that state 
we dream or are drowsy. 

Theta (3−8 Hz) 

Also classified as slower brain activity. The connection can be 
made with creativity, intuition, daydreaming and fantasy. It also 
covers memories, emotions and feelings. Theta waves can be 
expressed through prayer, meditation and spiritual capture. It can 

be said to occur between waking consciousness and sleeping. When 
theta wave is optimal, it allows for flexible and complex behavior 
structures such as learning and remembering. The imbalance of 
these waves may indicate illness or stress present. 

Alfa (8–12 Hz) 

Normal alpha status allows for fast and efficient task management. 
In this condition, most people feel relaxed and calm. You could say 
that this wave is like a bridge between the conscious and the 

unconscious. The alpha state is associated with extraversion, 
creativity (when solving a problem or listening), and having mental 
work. When the alpha waves are at the optimum range, we 
experience well-being, see the world positively, and feel a sense of 
calm. This situation is one of the most important when learning and 
using information already learned, such as work and education. 

Beta (12–38 Hz) 

The ripple is typical of "fast" activities. This wave is taken as a 

normal rhythm and is the dominant wave when the person is 
collected or upset with the eyes open. Waves also occur in listening, 
thinking, analytical problem solving, decision making, information 
processing, etc. Because of its relatively wide range, this wave is 
divided into low, medium and high beta waves. 

Gama (38–42 Hz) 

It is a unique frequency wave that is present in all parts of our 
brains. When they have to process certain information from 

different parts, it is precisely the 40 Hz frequency that combines the 
necessary brain regions for simultaneous processing of data. When 
we remember something well, it's at 40 Hz activity. 

2. READING EEG AND ANALYSIS
For recording the brainwaves we have been using BCI Emotiv 

Insight, which has the excellent API for accessing that data directly 
from the device using Bluetooth protocol. With the API we 
managed to get the raw EEG values for each sensor out of five. That 
data was received in JSON format. Next, to the values from the 
device, we have been also adding the marker which was the 

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

57DOI: https://doi.org/10.26493/978-961-7055-82-5.57-60



indicator for us to know which type of the image was user looking 
when specific values from the channel were recorded. In the end, 
our recorded dataset had the following structure: 

• ID,

• TIMESTAMP,

• RAW_CQ (raw value of the quality of the signal),

• Values from the electrodes in mV for each location on the head 
(Af3, T7, P7, T8, Af4) (semanticscholar, 2019),

• EXPOSURE (0 = nature images, 1 = food images).

First, we created the desktop version of the application, which was 
used as a bridge between the connecting the device with the PC and 
the presentation media to display the images to the user. 
Application's basic workflow was that first, we established the 
connection between the device and the PC, we had to choose the 
type of image dataset, and the interval of the presentation. 

3. IMPLEMENTATING THE EEG

ANALYSIS FRAMEWORK
With all that set we run the recording and first displayed to the user 

the blank screen, just for calibrating the data when a user is having 
closed/open eyes and watching the monitor. 

Figure 1. The experimental setup. 

After 30 sec of each, the pictures (Figure 2) from the selected 
dataset started to switch in the selected interval. Our recordings 
lasted maximum to 30 minutes, depending on the calmness, 

relaxation of the user. It was really hard to stay concentrated for a 
while, just looking at the pictures, without thinking and moving 
much. 

Figure 2. The picture sets for the experiment. 

We repeated the recordings on the same user for multiple hours for 
each type of dataset. Our recording room was isolated from the 
outside noise and with the constant lighting and minimalism of the 
objects in the room. We knew that we have to eliminate as much as 
possible distractions to get reliable recordings from the consumer-

based device. All that data was saved in a CSV format per 
recording, on the interval of 100ms (this is the interval of each read 
of data made by the device). 

Table 1. Collected dataset of EEG signals 

from Emotive Insight device. 

It was a mixture of the recorded values from different datasets. Our 
entire dataset with the length about 50.000 rows. This was the result 
of almost 2 hours of recording the brainwaves. We split the list into 
two groups for having the data for testing and learning process in 
ML. The ratio was 80:20 for the learning process. With all that

ready we continued our work, with creating the artificial neural
network model.

3.1 Analysis with Neural Network 
Python framework Keras helped us to create the following neural 
model. The type of model we have created is called the sequential 
model and allows you to create multiple levels one by one. It is 
limited in that it does not allow you to create models that share 
layers or have multiple inputs or outputs 

In the input level it is required to define the dimension of the data 
in the first level, because at the beginning the model cannot know 

what data will come to the input. Input data in our case were the 
values from the electrodes (Af3, T7, P7, T8, Af4). 

Figure 3. Construction of neural  

network model with three layers. 

Normal distribution was used to initialize the weights, which 
initialized the weights according to the function results. The 
activation parameter was defined with a well-established and 
relatively simple Relu function in the input and hidden levels of the 
model. For the output level, however, we had to define a sigmoid 
function that allows us to get a result between 0 and 1. 

We also added a so-called level dropout among the individual 
levels, which serves to ensure that randomly selected neurons are 
omitted during the learning phase. This means that the results of the 
forward pass activation function are removed, as well as any weight 

ID Timestamp Raw_value Af3 T7 P7 T8 Af4 Marker

0 115 500 4279.487 4250.256 4254.872 4225.641 4291.795 0

1 230 500 4252.821 4209.231 4249.231 4165.641 4246.667 0

2 345 1023 4267.692 4235.897 4192.308 4167.179 4249.231 0

3 460 500 4253.333 4229.744 4276.41 4169.744 4240.513 0

4 575 1023 4262.564 4203.077 4183.077 4165.641 4246.154 0

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

58



change is not applied to the backward pass. All these procedures 
help to make the model generalizable. 

When we had finished defining the model, we still had to compile 
the model with a function that would define a loss (optimizer) that 
would be able to update the weights according to the result and a 
function that would return us the result, with what precision in 
percent, the model predicted the result with given parameters 

(weights and bias). 

Algorithm 2. Compilation of neural network model. 

In the next step, we still had to set the parameters for how the model 
would learn. 

Algorithm 3. Fitting of the neural network model. 

As the first two parameters, we sent the data to be provided for 
learning along with the results, and we also defined the size of the 
data packets in one epoch. In practice, this meant more or less that 
we repeatedly started learning with different values of the size of 
the batch and epoch. 

To determine how well our neural model performed, we used the 
evaluate function, which returns the loss and metric values for the 
model under test. 

We obtained a result from the results, which showed that our model 
predicted the result to reach an accuracy of 55%, which was not an 
impressive result. 

3.2 Analysis with Recurrent Neural Network 
We can more easily imagine this type of neural model by thinking 
about how our thoughts work, they always relate to our previous 
thoughts, we could say that we never start thinking from scratch. 
This is also how the recurrent-type neural model (RNN) works, 
which does not restart at every iteration. Traditional NNs do not do 
this, which is a disadvantage. 

Our brainwaves data read on a given image is like a list in which at 
a given moment, through different positions (Af3, T7, P7, T8, Af4), 
we can find out which image was shown to the user. However, these 

values cannot provide us with high reliability of the result, as there 
were significantly too many factors present when recording data 
such as electrode reliability, deconcentrating of the user, sudden 
movements of the user's head, physiological processes in the body, 
etc. For these reasons, it might be better to want to get that search 
result across multiple data records, because within those records we 
can define a pattern in our data that could give us a more reliable 
result. Because even in the presence of external factors that 
interfere with our data reliability, through a large amount of records 

these values are limited to a given stock of values. 

We also used the Keras API to build the RNN model, using the 

SimpleRNN layer, which is a fully connected RNN, where the 

output from the previous step is sent back to the input for a new 
learning step. The RNN model accepts a 3-dimensional input type 
for the input, and our data is in the 2-dimensional type, the third 
data will represent the step here. Data transformation was achieved 
by the numpy.reshape method. 

Once we had the data in the required type and form, we started 
building the RNN model. We used again as a input data values from 
the electrodes (Af3, T7, P7, T8, Af4). 

For which we defined the model type as sequential. We added a 
SimpleRNN level with 32 dimensions and two Dense levels to 

the model, the first with 8 dimensions and the output with one. For 

simplicity, we used activation function Relu. 

Finally, when we built the model, we further defined the 
optimization function as RmsProp which is designed for RNN 

models and the loss function as the average squared error. 

Algorithm 6. Construction of recurrent 

neural network model. 

After learning the model, we got a good start (approx. 62% 
accuracy), which was a good starting point for optimizing our 
model. We have added another Dense level to our model, which 
should help with the intermediate learning steps, since we want to 
get better results with the RNN model than with the previous NN, 
but we need to know that there are many more factors (parameters, 
hidden levels, understanding the flow of data) that make it difficult 

to understand and refine the model. 

In the end, we obtained an accuracy that defines the accuracy of the 
result of 80%, which in our case is a satisfactory result, but in 

practice, unfortunately, it would not be enough to use the model for 
commercial purposes or for research. Therefore, we decided to 
change our model by removing the second last level with eight 
neurons, as it improved the learning result compared to the previous 
model but still did not succeed in getting a better result. What 
happened here was that the model became too complex and because 
of this, the activation functions failed, leading the learning phase to 
better weight adjustments that would give better learning results. 

In the end, our model looked the same as it did at the beginning of 
defining the model. Here, we then started from the beginning and, 
before SimpleRNN, inserted a new entry level (Embeding), 

which transforms positive data with numbers into dense vectors, for 
example:  

[[4], [20]] → [[0.25, 0.1], [0.6, - 0.2]] 

This level therefore does not require 3D data at the beginning, so 
we also removed the line from our code for converting 2D data into 
3D. The output type from Embeding layer is in 3D, which suited 

us in passing the data to our SimpleRNN layer. 

Algorithm 8. The final RNN model. 

4. RESULTS OF THE EXPERIMENT AND

CONCLUSION
In our scenario, we had a collection of data that represented the read 

values from the BCI device per channel and a marker to indicate 

model.compile(loss="binary_crossentropy", 

 optimizer="adam", 

 metrics=['accuracy']) 

model.fit(x_train, 

 y_train, 

 batch_size=124, 

 epochs=1000, 

 validation_data=(x_test, y_test)) 

model = Sequential()  

model.add(SimpleRNN(units=32, 

 input_shape=(1, 5), 

 activation="relu")) 

model.add(Dense(1))  

model.compile(loss='mse', 

 optimizer='rmsprop', 

 metrics=['accuracy']) 

model = Sequential()  

model.add(Embedding(10000, 124))  

model.add(SimpleRNN(32))  

model.add(Dense(1, activation='sigmoid')) 

model.compile(loss = "mse",  

 optimizer = "rmsprop", 

 metrics=['accuracy'])  

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

59



which image the user observed while reading the values. So we had 
6 properties that we split into two lists. The first with values from 
the device and the second with the marker that represented the 
result. All of this information was further divided into a learning 
and test list. 

We used two different machine learning models in our process. 
With the classic NN model, we got worse results because it was 

obvious that we had too little data despite recording data for hours 
on the user. Also for this reason NN performed worse because it 
only changes weights at the end of learning. Meanwhile, the RNN 
changed weights during the learning step itself, eventually making 
significantly better predictions, despite the small amount of 
learning data, as it used internal memory to use the result from the 
previous output to improve the new one. 

Figure 4. Accuracy through the epochs of the training 

process for the first simple NN model. 

Figure 4 shows how the first simple NN model learned over training 
process. We can see that the model improved its accuracy in the 
first half of learning, but towards the end more or less came closer 
to the same values. If we significantly increased the number of 
epochs, the result did not improve over time. 

Figure 5. Accuracy through the epochs of the training 

process for the RNN model. 

However, when learning the RNN model (Figure 5), we can see that 
the accuracy of the model has increased dramatically from the 
beginning of learning. This change was aided by a new type of data 
in which the learning process then had a better ability to adjust 

weights during learning, as well as the RNN model sending the 

learned state from the previous output to the input, which 
contributes to the "current" learning. Due to all the running factors, 
this model performed great compared to a regular NN. 

We can also see the loss in the Figure 6 as it declined over time, 
which meant that our model was getting better at telling the result 
or the user was looking at pictures of nature or food. 

Figure 6. The loss the epochs of the training 

process for the RNN model. 

All these results were still highly dependent on all the external 
factors that were present in the initial data capture. Initially, the 
quality and precision of the BCI device must be considered, as it is 

intended for commercial users and not for professional use, then we 
must know that user recording is very demanding, and a special gel 
must be present on the device to help increase electrode 
conductivity to capture electromagnetic waves, the electrodes 
should be also as close to the scalp as possible and with as large 
surface as possible. Another factor is, the mood of the user himself 
when scanning whether he was always asleep, steady, relaxed, 
focused are all arguments that should always be the same. All these 
factors influence the quality of the data and the later classification 

with machine learning. 

5. ACKNOWLEDGMENTS
The authors acknowledge financial support from the Slovenian 
Research Agency (Research Core Funding No. P2-0057). 

6. REFERENCES
[1] Simpraga, S., Alvarez-Jimenez, R., Mansvelder, H.D., Van 
Gerven, J.M., Groeneveld, G.J., Poil, S.S. and Linkenkaer-Hansen,
K., 2017. EEG machine learning for accurate detection of 
cholinergic intervention and Alzheimer’s disease. Scientific 
reports, 7(1), p.5775.

[2] Boashash, B. and Ouelha, S., 2016. Automatic signal
abnormality detection using time-frequency features and machine
learning: A newborn EEG seizure case study. Knowledge-Based 

Systems, 106, pp.38-50.

[3] Vanegas, M.I., Ghilardi, M.F., Kelly, S.P. and Blangero, A.,
2018, December. Machine learning for EEG-based biomarkers in 

Parkinson’s disease. In 2018 IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM) (pp. 2661-2665). IEEE.

[4] Subha, D.P., Joseph, P.K., Acharya, R. and Lim, C.M., 2010.
EEG signal analysis: a survey. Journal of medical systems, 34(2),
pp.195-212.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

60



Transfer Learning Tuning Utilizing Grey Wolf Optimizer for
Identification of Brain Hemorrhage from Head CT Images

Grega Vrbančič
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46

SI-2000 Maribor, Slovenia
grega.vrbancic@um.si

Milan Zorman
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46

SI-2000 Maribor, Slovenia
milan.zorman@um.si

Vili Podgorelec
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46

SI-2000 Maribor, Slovenia
vili.podgorelec@um.si

ABSTRACT
Most commonly, diagnosing the brain hemorrhage - a con-
dition caused by a brain artery busting and causing bleed-
ing is done by medical experts identifying such pathologies
from the computer tomography (CT) images. With great
advancements in the domain of deep learning, utilizing deep
convolutional neural networks (CNN) for such tasks has al-
ready proven to achieve encouraging results. One of the ma-
jor problems of using such an approach is the need for big
labeled datasets to train such deep architectures. One of the
efficient techniques for training CNNs with smaller datasets
is transfer learning. For the efficient use of transfer learning,
many parameters are needed to be set, which are having a
great impact on the classification performance of the CNN.
Most of those parameters are commonly set based on our
previous experience or by trial and error. The proposed
method addresses the problem of tuning the transfer learn-
ing technique utilizing the nature-inspired, population-based
metaheuristic Grey Wolf Optimizer (GWO). The proposed
method was tested on a small head CT medical imaging
dataset. The results obtained from the conducted experi-
ments show that the proposed method outperforms the con-
ventional approach of parameter settings for transfer learn-
ing.

Keywords
Convolutional Neural Network, Transfer Learning, Optimiza-
tion, Biomedical images, Classification

1. INTRODUCTION
Most commonly used medical imaging technique to assess
the severity of brain hemorrhage, also termed as a cere-
bral hemorrhage, intracranial hemorrhage or intracerebral
hemorrhage is the computer tomography or shortly CT. As
reported in [24], each year intracerebral hemorrhage (ICH)
affects 2.5 per 10,000 people worldwide and is associated
with high mortality that only 38% of ICH patients could
survive over one year. Besides, more than 80% of people
are suffering due to being born with a weak spot in their
major brain arteries. However, the early diagnosis of the
condition and receiving immediate and relevant treatment
can be a lifesaver for the affected patient. Traditionally, the
tools helping in diagnosing such conditions are CT images
obtained from the CT scan, which are then examined by the
expert such as an experienced doctor, who has the ability to
identify important symptoms of the disease from the image

by a naked eye [3].

With the expansion of deep learning field and with the great
achievements of deep convolutional neural networks (CNN)
for the image and video recognition tasks [26, 27] are such
approaches and methodologies also being used for addressing
various medical areas such as medical image analysis [1] and
classification [31, 12], biomedical signal segmentation [23]
and detection of various human organ activities [30].

In recent studies [12, 4, 11], the authors have already ad-
dressed the problem of identifying various kinds of brain
hemorrhages utilizing different kinds of more or less com-
plex deep CNNs. However, the problem with the training
of such deep CNN architectures remains the same. In or-
der to achieve acceptable performance, the training of such
networks requires a lot of resources in terms of time and pro-
cessing power. Additionally, a big dataset of images, hand-
labeled by experts is also required. Given the fact that such
high-quality big datasets of biomedical images are hard to
obtain, researchers are trying various approaches and tech-
niques to overcome this problem. One of the most popular
techniques for training deep CNNs on small datasets is trans-
fer learning, which has already proven to achieve great re-
sults [4, 14]. But the transfer learning techniques also comes
with the downsides. Most commonly, the biggest problems
when utilizing the transfer learning approaches are finding
out which and how many layers to fine-tune and how to set
the training parameters for the fine-tuning of the CNN in
order to obtain the acceptable outcome.

Based on the encouraging results of transfer learning tech-
nique being used to train CNNs for the task of classification
of biomedical images and our previous experience on opti-
mizing various training parameters [32], we set our goal to
develop a method for an automatic optimization of trans-
fer learning utilizing nature-inspired population-based Grey
Wolf Optimizer (GWO) algorithm named GWOTLT.

The rest of the paper is organized as follows. In Section
2, we briefly describe methods which were used. In Sec-
tion 3, we present the proposed GWOTLT method, while in
Section 4 we describe the experimental setup of conducted
experiments, the results of which are presented in Section 5.
Conclusions and final remarks are gathered in Section 6.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

61DOI: https://doi.org/10.26493/978-961-7055-82-5.61-66



2. METHODS
In this section, the methods utilized in our proposed GWOTLT
method are briefly presented.

2.1 Convolutional Neural Network
In the 1980s, the CNNs were first presented in Fukushima’s
paper [10]. The author proposed a deep learning approach
for visual recognition, called neocognitron, which was based
on the hierarchical layers trained with the utilization of the
stochastic gradient descent algorithm. The major break-
through with CNNs occurred in 1998 with the LeCun’s LeNet5
[17] proposed architecture which is considered to be one of
the key factors that started the enormous expansion of the
deep learning field.

Initially, the deep CNNs were defined as 2-dimensional con-
strained neural networks with alternating convolutional and
subsampling or pooling layers which are fully connected at
the end, combining three architectural ideas [17]:

• local receptive fields,

• shared weights, and

• spatial and temporal subsampling.

Most commonly the convolutional layer is composed of sev-
eral so-called feature maps. Those feature maps are calcu-
lated with different weight vectors, which enable us to ex-
tract multiple features from each location. The results of the
convolutional calculation are obtained from a convolutional
operation performed between feature maps of the previous
layer and convolution kernel of the current layer in addition
to the activation function. A subsampling layer or pooling
layer reduces the dimension of feature maps, while preserv-
ing the important extracted features, usually performing lo-
cal averaging and subsampling. The fact, that extracted
features’ real locations are not important as long as their
approximate positions relative to others remain the same, is
making subsampling possible [17].

Although the researchers have through the years developed
various complex CNN architectures which proven to be highly
successful in the large-scale image and video recognition such
as Krizhevsky’s AlexNet [15], Szegedy’s GoogleNet [27] and
Simonyan’s VGG16 [26], the challenges regarding image and
video recognition still exist. Such major challenges are pri-
marily the need for large datasets in order to train the CNNs
and the time complexity of the training process.

2.2 Transfer Learning
One of the most popular approaches to address the time
complexity of deep CNN training process as well as the prob-
lem of not having large dataset is known as a transfer learn-
ing. Transfer learning can be defined as the improvement of
learning a new task through the transfer of knowledge from
a related task that has already been learned. In machine
learning terms, the transfer learning roughly translates to
transferring the weights of already trained deep neural net-
work model for one task, to the model tackling second re-
lated task [13]. Based on previous work [16, 2, 25], such

approaches work especially well if we have a small, insuffi-
cient dataset.

Transfer learning is most commonly used in two ways [2, 21]:

• Fine-tuning in which the weights of the pre-trained
CNN base model are preserved (frozen) on some of
the layers and fine-tuned (trained) in remaining layers
of CNN.

• CNN as a feature extractor, where the general idea is
to access features of any layers and using those encoded
features to train a classifier of your choice.

Generally, the first (top) layers of the CNN preserve more
abstract, generic features applicable to other tasks, while
the layers closer to the bottom provide more specific fea-
tures that can benefit from fine-tuning as they will be ad-
justed specifically for the targeted task. For the fine-tuning
approach to transfer learning, there is no general recipe or
rule to follow on selecting which layers to tune and which
ones to preserve as they are. Also, another challenge uti-
lizing the fine-tuning approach is deciding how many layers
to add to the bottom of the pre-trained convolutional base,
and which optimizer and learning rate to use in the process
of fine-tuning.

2.3 Grey Wolf Optimizer
In recent years, swarm intelligence and bio-inspired algo-
rithms for solving the optimization problems are quite pop-
ular and proven to be very efficient in solving real-world
problems [9].

One of the most popular representatives of such optimization
algorithms is a Grey Wolf Optimizer or simply GWO [19].
The inspiration of GWO is adapted from a strict leader-
ship hierarchy and hunting mechanisms of grey wolfs (Canis
lupus). The grey wolf leadership hierarchy is divided into
four dominance groups, i.e. alpha, beta, delta and, omega.
Besides the leadership hierarchy, group hunting is also an in-
teresting social behavior of grey wolfs. As defined by authors
in [20] main phases of grey wolf hunting are as follows [19]:

• Tracking, chasing and approaching the prey.

• Pursuing, encircling, and harassing the prey until it
stops moving.

• Attack towards the prey.

The GWO algorithm implementation is mathematically mod-
eling the mentioned hunting technique and the social hierar-
chy in order to perform optimization. The basic pseudo-code
of GWO algorithm is presented in Algorithm 1.

3. PROPOSED METHOD
The basic concept of our proposed method for tuning of
transfer learning approach based on the GWO algorithm,
named as GWOTLT is presented in Figure 1. The GWO
algorithm is used to find the optimal parameters for the

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

62



Algorithm 1 Pseudo code of the GWO algorithm.

1: Initialize the grey wolf population Xi (i = 1, 2, ..., n)
2: Initialize a, A, and C
3: Calculate the fitness of each search agent
4: Xα = the best search agent
5: Xβ = the second best search agent
6: Xδ = the third best search agent
7: while i < Maximum iterations do
8: for each search agent do
9: Update the position of the current search agent

10: end for
11: Update a, A, and C
12: Calculate the fitness of all search agents
13: Update Xα, Xβ , and Xδ

14: i = i + 1
15: end while
16: return Xα

fine-tuning transfer learning process. In our case, the goal is
to find a number of neurons in the last fully connected layer,
dropout probability of dropout layer and the most suitable
optimizer and learning rate value.

Figure 1: The conceptual diagram of the proposed
GWOTLT method.

Given the number of optimized parameters for fine-tuning
of the transfer learning process, the GWOTLT is producing
the solution with the dimension of 4. The individuals of
GWOTLT produced solutions are presented as real-valued
vectors:

x
(t)
i = (x

(t)
i,0, . . . , x

(t)
i,n), for i = 0, . . . ,Np − 1 , (1)

where each element of the solution is in the interval x
(t)
i,1 ∈

[0, 1].

In next step, the real-valued vectors (solutions) are mapped
as defined in equations 2, 3, 4 and 5, where y1 presents the
number of neurons in last fully connected layer, y2 dropout

probability, y3 optimization function and y4 learning rate.
Each y1 value is mapped to the particular member of the
population N = {64, 128, 256, 512, 1024} according to the
members position in the population, which represents a group
of available numbers of neurons in last fully connected layer.
All of the y3 values are mapped to the specific member of
population O = {adam, rmsprop, sgd}, which represents a
group of available optimizer functions, while each y4 values
are mapped to the member of population L = {0.001, 0.0005,
0.0001, 0.00005, 0.00001}, which represents a group of learn-
ing rate choices.

y1 =

{
bx[i] ∗ 5 + 1c; y1 ∈ [1, 5] x[i] < 1

5 otherwise,
(2)

y2 = x[i] ∗ (0.9− 0.5) + 0.5; y2 ∈ [0.5, 0.9] (3)

y3 =

{
bx[i] ∗ 3 + 1c; y3 ∈ [1, 3] x[i] < 1

3 otherwise,
(4)

y4 =

{
bx[i] ∗ 5 + 1c; y4 ∈ [1, 5] x[i] < 1

5 otherwise,
(5)

To evaluate each solution produced by GWOTLT the fitness
function was defined as follows:

f(x) = 1−AUC(x) (6)

where f(x) is the fitness value for solution x and the AUC(x)
is an area under the ROC curve calculated on test split of
the search dataset sub-sample.

4. EXPERIMENT SETUP
To evaluate the performance of our proposed method, we
conducted two experiments. The experimental settings, data-
set, evaluation methods and metrics used are in-depth pre-
sented in the following subsections.

The proposed method was implemented in Python program-
ming language with the following external libraries: Numpy
[28], Pandas [18], scikit-learn [22], NiaPy [29], Keras [5] and
Tensorflow [7].

All of the conducted experiments were performed using the
Intel Core i7-6700K quad-core CPU running at 4 GHz, 64GB
of RAM, and three Nvidia GeForce Titan X Pascal GPUs
each with dedicated 12GB of GDDR5 memory, running the
Linux Mint 19 operating system.

4.1 Dataset
Given the task - identification of brain hemorrhage from CT
images, we used a publicly available dataset of manually

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

63



collected head CT scan images called Head CT - hemor-
rhage [8]. The dataset contains in total of 200 images of
various sizes. Of those 200 images, half of them are images
of normal head CT slides without any brain pathologies, and
the other half are the images containing some kind of brain
hemorrhage. Also, each image is collected from a different
person.

Figure 2: Example images of head CT scans, where
a) represents normal head CT scan image. while
b) represents the head CT scan image with brain
hemorrhage present.

4.2 Grey Wolf Optimizer settings
To initialize the GWO algorithm, tackling the problem of
finding the best suitable set of parameters to achieve the
best performance of transfer learning fine-tuning, the GWO
parameter settings presented in Table 1 were used.

Parameter Value

Dimension of the problem 4

Population size 10

Number of function evaluations 50

Lower bound 0.0

Upper bound 1.0

Table 1: The initial GWO parameter settings.

4.3 Baseline Convolutional Neural Network
For the convolutional base of our proposed method, we uti-
lized the VGG16 [26] CNN architecture presented in Fig-
ure 3, pre-trained on the imagenet [6] dataset. As we can
observe from the figure, the VGG16 CNN is comprised of
5 convolutional blocks, which together form a convolutional
base. At the bottom of the convolutional base a flatten
layer, two fully connected layers and one fully-connected
layer with softmax activation function forming a classifier
layer are chained. By default, VGG16 CNN on the input
receives an image of size 224 x 224 pixels and at the bot-
tom classifies fed images into 1000 classes, while each of the
convolutional layers of VGG architecture utilizes the ReLU
activation function.

Performing the transfer learning based on the VGG16 CNN
convolutional base, we have persisted the top four convolu-
tional blocks and enabled for fine-tuning only last convolu-
tional block. At the bottom of this convolutional base, we
have then chained a flatten layer, a dropout layer, fully con-
nected layer and classifier with softmax activation function,

classifying images into two target classes - images with and
images without brain hemorrhage present.

For the baseline experiments, we have set the parameters
which are we optimizing to the values presented in Table 2.

Parameter Value

Number of neurons on the
256

last fully connected layer

Dropout probability 0.5

Optimizer function RMSprop

Learning rate 10−5

Table 2: Baseline experiment parameter settings for
transfer learning fine tuning.

With the presented parameter settings, we trained the CNN
for 50 epochs utilizing an efficient mini-batch training, with
batch size set to 32. As presented in the dataset section, the
collected image sizes vary from 100 x 100 px to 300 x 300
px, thus we have decided to resize all images to the VGG16
default input size of 224 x 224 px.

4.4 GWOTLT settings
As presented in the previous section, the GWOTLT fine-
tuning transfer learning parameters are set based on the
produced GWO solution. The overall architecture of the
convolutional base and the appended classification layers at
the bottom are the same as in the baseline experiment. Due
to the iterative nature of our proposed method, we had to
split the given train set in ratio 80:20, where we used the
larger subset for training different GWOTLT produced so-
lutions and evaluating them - calculating the AUC on the
remaining smaller subset of the initial training set. In each
run of the GWOTLT, 50 evaluations of produced possible
solutions are conducted, from which the best - the one with
the highest fitness value is selected. To evaluate each solu-
tion, we train each solution for 10 epochs and then evaluate
its performance. The selected solution is then trained for
full 50 epochs on the whole given train dataset and finally
evaluated on the given test set.

4.5 Evaluation method and metrics
Using the described experimental setup, we conducted two
experiments, one using the CNN transfer learning approach
without any optimization reported as a Baseline and one uti-
lizing the presented GWOTLT method reported as GWOTLT.
For each of the experiments, we obtained six performance
metrics: time - reported in seconds, AUC, F − 1 score, pre-
cision, and recall, reported in percents and kappa coefficient
presented as a real value on the interval between 0 and 1.

To objectively evaluate the performance of the proposed
method, we adapted the gold standard 10-fold cross-validati-
on methodology, where a dataset is divided into train and
test sets in a ratio 90:10. Using the images from 9 out of 10
folds for the training and performing the performance eval-
uation on the remaining one fold. In the same manner, we
repeated the whole process in total 10 times, each time leav-
ing different fold out for the performance evaluation. The
reported values are presented as average values over 10 folds
if not specified otherwise.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

64



6464

22
4

224

Block 1

128128

11
2

Block 2

256 256 256

56

Block 3

512 512 512

28

Block 4

512 512 512

14

Block 5

1

25
08
8

Flatten

1

40
96

Fully
Connected 1

1

40
96

Fully
Connected 2

1

Fully
Connected 3
+ Softmax

K

Figure 3: The architecture of the VGG16 convolutional neural network.

5. RESULTS
The obtained performance results from the conducted ex-
periments are summarized in Table 3. Focusing on the time
metrics, the reported results are expected, with the lowest
time complexity being achieved by the Baseline method. On
the other side, the proposed GWOTLT method is expected
to have a higher time complexity in general due to the it-
erative nature of the proposed method. In our case, the
GWOTLT method performed worse in the aspect of time
complexity, roughly by a factor 15.

Analyzing presented classification performance metrics, the
GWOTLT method is standing out with achieved best results
on all of the reported performance metrics. The AUC, F−1,
precision and recall metrics are higher by a margin of 4%,
5.18%, 2.27%, 7% respectively in comparison to the baseline
method. Focusing on the kappa coefficient values, we can ob-
serve that the GWOTLT achieved a near-perfect agreement
with kappa coefficient at 0.82 and outperformed the base-
line method by a margin of 0.08. Looking at the standard
deviations of the reported classification average metric val-
ues, we can observe that for all classification metrics, except
for the precision, the best performing GWOTLT method is
showing the smallest standard deviation. The greatest im-
provement of lowering the standard deviation the GWOTLT
achieved for the recall metric by a margin of 10.38%, while
the worst standard deviation is obtained for the precision
metric where the GWOTLT lacks behind just by 0.99%.

6. CONCLUSIONS
In this paper, we presented the GWOTLT method which is
a nature-inspired, population-based metaheuristics method
for tuning the transfer learning approach of training the deep
CNN. The GWOTLT method was implemented utilizing the
GWO optimization algorithm and applied to the problem of
identification of brain hemorrhage from the head CT scan
images. The results obtained from the conducted exper-
iments have proven that the proposed GWOTLT method
seems to be very promising for the task of transfer learning
tuning achieving higher classification performance for all of
the measured classification metrics.

Metrics Baseline GWOTLT

Time [s] 49.10 ± 1.85 759.10 ± 59.67

AUC [%] 87.00 ± 9.19 91.00 ± 7.75

F − 1 [%] 86.27 ± 11.03 91.45 ± 6.81

Precision [%] 88.62 ± 10.37 90.89 ± 11.36

Recall [%] 86.00 ± 17.13 93.00 ± 6.75

Kappa 0.74 ± 0.18 0.82 ± 0.15

Table 3: Comparison of average times, accuracies,
AUCs, F − 1 scores, precisions, recalls and kappa
coefficients with standard deviations over 10-fold
cross-validation.

In the future, we would like to expand our work to include
various CNN architectures as a convolutional base for our
GWOTLT method and also evaluate the performance of the
proposed method against various medical imaging datasets.

Acknowledgments
The authors acknowledge the financial support from the
Slovenian Research Agency (Research Core Funding No. P2-
0057).

7. REFERENCES
[1] S. U. Akram, J. Kannala, L. Eklund, and J. Heikkilä.

Cell segmentation proposal network for microscopy
image analysis. In Deep Learning and Data Labeling
for Medical Applications, pages 21–29. Springer, 2016.

[2] E. Al Hadhrami, M. Al Mufti, B. Taha, and
N. Werghi. Transfer learning with convolutional neural
networks for moving target classification with
micro-doppler radar spectrograms. In 2018
International Conference on Artificial Intelligence and
Big Data (ICAIBD), pages 148–154. IEEE, 2018.

[3] U. Balasooriya and M. Perera. Intelligent brain
hemorrhage diagnosis system. In 2011 IEEE
International Symposium on IT in Medicine and
Education, volume 2, pages 366–370. IEEE, 2011.

[4] P. Chang, E. Kuoy, J. Grinband, B. Weinberg,
M. Thompson, R. Homo, J. Chen, H. Abcede,

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

65



M. Shafie, L. Sugrue, et al. Hybrid 3d/2d
convolutional neural network for hemorrhage
evaluation on head ct. American Journal of
Neuroradiology, 39(9):1609–1616, 2018.

[5] F. Chollet et al. Keras, 2015.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[7] M. A. et al. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available
from tensorflow.org.

[8] Felipe Kitamura. Head CT - hemorrhage, 2018.
Available at
https://www.kaggle.com/felipekitamura/head-ct-
hemorrhage, Accessed:
2019-02-21.

[9] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and
D. Fister. A brief review of nature-inspired algorithms
for optimization. arXiv preprint arXiv:1307.4186,
2013.

[10] K. Fukushima. Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition
unaffected by shift in position, BioL Cybem. 36 (1980)
193-202. S. Shiotani et al./Neurocomputing 9 (1995)
Ill-130, 130, 1980.

[11] M. Grewal, M. M. Srivastava, P. Kumar, and
S. Varadarajan. Radnet: Radiologist level accuracy
using deep learning for hemorrhage detection in ct
scans. In 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), pages 281–284.
IEEE, 2018.

[12] A. Helwan, G. El-Fakhri, H. Sasani, and
D. Uzun Ozsahin. Deep networks in identifying ct
brain hemorrhage. Journal of Intelligent & Fuzzy
Systems, (Preprint):1–1, 2018.

[13] M. Hussain, J. J. Bird, and D. R. Faria. A study on
cnn transfer learning for image classification. In UK
Workshop on Computational Intelligence, pages
191–202. Springer, 2018.

[14] K. Jnawali, M. R. Arbabshirani, N. Rao, and A. A.
Patel. Deep 3d convolution neural network for ct brain
hemorrhage classification. In Medical Imaging 2018:
Computer-Aided Diagnosis, volume 10575, page
105751C. International Society for Optics and
Photonics, 2018.

[15] A. Krizhevsky. One weird trick for parallelizing
convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

[16] D. Larsen-Freeman. Transfer of learning transformed.
Language Learning, 63:107–129, 2013.

[17] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[18] W. McKinney. Data structures for statistical
computing in python. In S. van der Walt and
J. Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 – 56, 2010.

[19] S. Mirjalili, S. M. Mirjalili, and A. Lewis. Grey wolf
optimizer. Advances in engineering software, 69:46–61,
2014.

[20] C. Muro, R. Escobedo, L. Spector, and R. Coppinger.
Wolf-pack (canis lupus) hunting strategies emerge
from simple rules in computational simulations.
Behavioural processes, 88(3):192–197, 2011.

[21] K. Nogueira, O. A. Penatti, and J. A. dos Santos.
Towards better exploiting convolutional neural
networks for remote sensing scene classification.
Pattern Recognition, 61:539–556, 2017.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[23] R. Rouhi, M. Jafari, S. Kasaei, and P. Keshavarzian.
Benign and malignant breast tumors classification
based on region growing and cnn segmentation. Expert
Systems with Applications, 42(3):990–1002, 2015.

[24] L. Shi, S. Xu, J. Zheng, J. Xu, and J. Zhang. Blood
Pressure Management for Acute Intracerebral
Hemorrhage: A Meta-Analysis. Scientific Reports,
7(1):14345, 2017.

[25] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu,
I. Nogues, J. Yao, D. Mollura, and R. M. Summers.
Deep convolutional neural networks for
computer-aided detection: Cnn architectures, dataset
characteristics and transfer learning. IEEE
transactions on medical imaging, 35(5):1285–1298,
2016.

[26] K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

[28] S. Van Der Walt, S. C. Colbert, and G. Varoquaux.
The numpy array: a structure for efficient numerical
computation. Computing in Science & Engineering,
13(2):22, 2011.

[29] G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister, and
I. Fister Jr. NiaPy: Python microframework for
building nature-inspired algorithms. Journal of Open
Source Software, 3, 2018.

[30] G. Vrbancic, I. J. Fister, and V. Podgorelec.
Automatic Detection of Heartbeats in Heart Sound
Signals Using Deep Convolutional Neural Networks.
Elektronika ir Elektrotechnika, 25(3):71–76, jun 2019.

[31] G. Vrbancic and V. Podgorelec. Automatic
Classification of Motor Impairment Neural Disorders
from EEG Signals Using Deep Convolutional Neural
Networks. Elektronika ir Elektrotechnika, 24(4):3–7,
aug 2018.

[32] G. Vrbančič, I. Fister, Jr., and V. Podgorelec. Swarm
intelligence approaches for parameter setting of deep
learning neural network: Case study on phishing
websites classification. In Proceedings of the 8th
International Conference on Web Intelligence, Mining
and Semantics, WIMS ’18, pages 9:1–9:8, New York,
NY, USA, 2018. ACM.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

66



System for remote configuration and over the air updates
in restricted environments

Marko Zabreznik
University of Maribor

Faculty of Electrical Engineering
and Computer Science

Koroška cesta 46, Maribor
marko.zabreznik@student.um.si

Jernej Kranjec
University of Maribor

Faculty of Electrical Engineering
and Computer Science

Koroška cesta 46, Maribor
jernej.kranjec@um.si

ABSTRACT
This paper illustrates a system for configuring, updating,
command execution, and data retrieval via limited com-
munication links of restricted embedded real-time operating
system. A custom domain-specific language design and ref-
erence implementation are proposed, which would simplify
the creation of custom program tasks while keeping data
transfers low and facilitating differential updates to any soft-
ware component. The proposed implementation extends the
FreeRTOS real-time operating system running on an ARM-
based microcontroller and connects to a remote command
server via a limited network connection. External factors
such as power shortage, component failure, and connection
loss are anticipated and handled by preset priority-based
scenarios.

Keywords
real time operating system, remote control, domain specific
language for remote task execution, data structures, remote
sensing

1. INTRODUCTION
In recent years, the cost and accessibility of world-wide com-
munication channels, low cost of sensor equipment, and ac-
cessible computer modules have given researchers new sources
of data acquisition. Systems used for such applications need
to operate autonomously, are remote or completely inacces-
sible while also potentially under limited power, intermit-
tent network connection, harsh or unpredictable weather,
and other environmental hazards. Depending on those con-
ditions, the objective or priorities might change during the
lifetime of the mission.

The goal of this paper is to introduce a solution for embed-
ded systems that require executing multiple different tasks
(e.g., collecting data from various sensors, data processing,
information storage and transmission), autonomous control

over task execution based on external parameters (e.g., avail-
able power or sensor activity), remote configuration, and
software updates. Presented solution would provide for more
straightforward creation of such systems as it would allow
for modular hardware components to be assembled into var-
ious configurations while only require to produce missing
software from module templates, the behavior of which is
controlled by a known set of parameters. To accomplish
this, we propose a domain-specific language extension for
a widely supported real-time operating system FreeRTOS
to define scenarios that have associated tasks, conditions,
and priorities. The same scenario definition is also used to
partition the software into blocks, allowing for over-the-air
updates and the addition of new scenarios remotely. Fur-
thermore, the scenario definition is also used to prioritize
the limited connection and system resources, and to allow
for direct control.

2. PROPOSED DESIGN
The proposed design incorporates many dynamic compo-
nents and thus vulnerable to corrupt, misconfigured, or buggy
software. For that reason, the software is divided into a safe,
minimal system (Bootstrap), and the schedule based con-
figurable (Operating System) with the Meta-Scheduler (see
Figure 1).

Both the Bootstrap and the Operating System can under-
stand the basic programming instructions that work in all
cases. Once an error in execution or corruption of the soft-
ware is detected and can not be recovered from, the micro-
controller reboots into the safe Bootstrap mode sends out a
distress signal and waits for commands.

2.1 Scenario
A Scenario (see Figure 1) is the basic unit of the design that
is independent of any other generic task, carries its configu-
ration, and takes up any predefined blocks on the flash. The
scenario can define a schedule and period of execution, the
priority it needs, and the power it requires. We use those
parameters to decide when and if the task is to run. The
parameters are defined using a domain-specific language at
compile-time but can change in the runtime with configura-
tion stored in the microcontroller flash for each scenario.

2.1.1 Settings
The settings parameter defines the size of the binary blob
the scenario can use for configuration data and is generally

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

67DOI: https://doi.org/10.26493/978-961-7055-82-5.67-70



Operating System

Bootstrap

F
la

s
h
 s

to
ra

g
e

B
a
tte

ry
M

o
d
e
m

S
D

 s
to

ra
g
e

OTE Flash 
Module

Meta-scheduler

Scenario

Reporter 
Task 
Queue

Logger 
Task 
Queue

Figure 1: Overview of main logical software compo-
nents and example hardware modules

only read from the scenario it belongs to. The settings are
stored in the microcontroller flash and are accessed when a
task requires them. The action of writing settings is done
only via server commands.

2.1.2 Schedule and period
The basis for the schedule is time intervals in which the sce-
nario runs and repetitions that happen in those defined in-
tervals. The Meta-Scheduler uses the configuration to wake
up the tasks at the specified hours and gives the task a time-
out that co-responds with the set period. In this way, we can
run the meta-scheduler in periods not more than one hour.
The meta-scheduler is idempotent, so running it multiple
consecutive times will not affect the running tasks.

2.1.3 Priorities
Priorities are the way the Meta-Scheduler decides if a task
should run at all, or if it should only run when there is
enough power in the budget or always in the case of critical
tasks. The report priority is used for reporting and is there
to keep a budget on power availability and network traffic.

2.1.4 Power
The power setting is a way to tell the Meta-Scheduler how
much power a task needs to be able to run so that significant
power-consuming tasks will only run when there is enough
energy available. Specific scenarios can execute depending
on power status. Configuration assumes the following condi-
tions: the battery is full, the solar array produces power, the
battery is charging, or when the battery is almost drained,
but we still want the task to run regardless of any power

Schedule and period descriptor

Last run

Settings pointer

Task handler

Week Hour Repetitions / period

Priority

Run
00 - off    01 - when free

10 - n/a    11 - always

Report
00 - off              01 - pad

10 - force pad   11 - force 

OS priority

Power

% of power per run

Can run on solar
Can run on battery

Timestamp Repeats

Needs bettery mutex

Can override power

Figure 2: Scenario configuration (read-only vari-
ables in gray and runtime variables in white blocks)

budgets. The power budget for a task is defined in the per-
centage of the total power available to the probe.

2.1.5 Task Notifications
A task is based on the FreeRTOS task [1] and its notification
variable that has, by default 4 bytes. The first 3 bytes are
used for custom messages send to the task, and the last byte
is used as flags to set repeats (timeouts) that the task should
run. Zero repeats mean the task will only run once in that
time-frame and put themselves into infinite sleep mode after
that. One or more repeats places the task into a timeout
of 60 minutes divided by the repeat rate, at a minimum
of 5-minute interval. More granular repeats can be made
within the task itself and are not registered with the Meta-
Scheduler. Any task with an interval will run until the next
time the Meta-Scheduler is run, and it stops the execution.

2.1.6 Logger
The Logger is a special scenario, available to all tasks for
logging purposes. It runs in a best-effort manner, using mul-
tiple queues with messages grouped by severity. The logs are
handled with the notification variable of the header.

The logs can be optionally saved on the SD card and only if
there is enough power and enough time has passed since the
last write. Since the queue could have been filled up since
the last write, the queue is cycled with the oldest messages
being reused. In the event of a hardware failure, the Logger
is disabled.

Each entry has a timestamp, a scenario id, and a fixed size
data blob to store the log message or data.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

68



G
e
n
e
ric

 s
c
e
n
a
rio

L
o
g
g
e
r s

c
e
n
a
rio

R
e
p
o
rt s

c
e
n
a
rio

G
e
n
e
ric

 ta
s
k

L
o
g
g
e
r ta

s
k

Conditions fail

Log action

T
im

e

Conditions match

Conditions match

Conditions fail

Conditions match

Conditions match

A
c
tio

n
A

c
tio

n

S
to

re
 to

 S
D

R
e
p
o
rt

E
n
q
u
e
u
e

E
n
q
u
e
u
e

Log action

Figure 3: Timeline of an example generic task, log-
ger, and reporter

2.2 Communication
Communication size is reduced to a minimum with compres-
sion based on common-knowledge. Since the server has the
same template, we can use that to avoid sending headers
before each data blob in some cases. The packet size, in
our example, the Iridium satellite network, is limited to 360
bytes from the probe and 270 bytes to the probe with charge
intervals of 50 bytes [2]. We use those limits to optimize ex-
penses on low-value data.

2.2.1 Reporting
The reporter is a special scenario, available to all tasks for
reporting purposes. Each priority level has a queue, and
repeat entries are overwritten. Scenarios send notifications
to the Reporter task using the notification variable and are
saved to the queue, awaiting packet construction. At prede-
fined intervals, the packet is constructed using the available
reports (see figure 1). Critical reports can be sent and are
flushed to the modem instantly using a special flag in the
report command.

To save space, we encode the reports into several kinds of
formats, denoted by the first few bits in the message.

2.2.2 Templated Report
The primary way to report is to use the section arrangement
on the microcontroller flash and the priority values to order
the scenarios. The first bit in the stream of each scenario
reports if the bits that follow are from the scenario. The
domain-specific language denotes the length of the data the
scenario will report. If the report bit is zero, we skip to the
next scenario with only 1 bit used to determine the scenario

Flash Command

Settings Command

Control Command

0 00 11 0 1 0 0 1 0 1 0 1 0 1 …

Location Length Binary data

0 10 11 0 1 0 0 1 0 1 0 1 0 1 …

Scenario ID Binary data (length of scenario data)

1 0 11 0 1 0 0 1 0 1 0 1 0 1 …

Scenario ID Notification binary data (3 bytes)

Template report

0 00 11 0 1 0 0 1 0 1 0 1 0 1 …

Scenario 1 data Scenario 2 data

Custom report

1 0 11 0 1 0 0 1 0 1 0 1 0 1 …

Custom binary data

Key-value report

0 1 0 0 11 0 1 0 0 1 0 0 11 0 1 …

Scenario 1 ID Binary data

0   - Scenario data

10 - Error report (4bytes)

11 - Stream to the end of the message

Figure 4: Command and report encoding format

has nothing to report. This method will not apply if there
are any scenarios with errors to report. If there is enough
space at the end of the packet, we fill the rest of the 50-byte
section with key-values, as explained in the next section.

2.2.3 Key-Value Reporting
The Key-Value is the most basic report used when there
are errors or unknown data type in the templated report.
The scenarios are again listed one after the other, prefixed
with the scenario key and the type of data prefix. Unlike
the templated report, the type of data can denote if the
following bytes are fixed width or if a length follows.

2.2.4 Custom Report
The custom report is a special report that can be only sent
on demand from a scenario and has no structure beyond the
first bit. This type of report is intended for crash reports and
critical errors and is not meant to be automatically handled.

2.3 Commands
Commands are packets sent from the server to configure or
run scenarios and to update any part of the microcontroller
flash.

2.3.1 Flash Commands

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

69



Flash commands (prefix 00) are simple write commands that
can be used either in the Bootstrap or the full Operating
System mode. The predefined nature of the flash allows us
to overwrite any scenario and core software. The command
starts with a location in the microcontroller flash, followed
by the length of the data to be written and the binary data
itself. The structure can repeat to the end of the packet.

2.3.2 Settings Commands
The settings command (prefix 01) is attached to a scenario
and therefore used with the Scenario id to find the location of
the settings block in microcontroller flash. The predefined
length provides safety from overflows. This structure can
repeat to the end of the packet.

2.3.3 Control Commands
Control commands are used to control task using their no-
tification variable directly and can, in most cases, be only
run within the full operating system mode. This structure
is composed of 3 bytes that are available as parameters sent
to the task.

2.3.4 System Control Commands
System control commands use the same pattern as sim-
ple control commands, but they use the predefined system
namespace. These commands can be used in either Boot-
strap or Operating System mode and are used for tasks like
flashing, rebooting, and other non-scenario tasks.

2.4 Over-the-air flash procedure
Changing any part of the software, including the Bootstrap,
system procedures, and scenarios can is accomplished with
the flash procedure using system control commands.

The procedure should be started by resetting the mutable
image on the flash storage with an exact copy of the original
software in the microcontroller flash. The next steps are
done using the flash commands to write changes into the
mutable image. The last step is sending the flash system
command with the hash of the image that we want to write
into the boot storage.

If the prepared image hash does not match the provided
value, a critical message is sent to the server, and the pro-
cedure is broken off. If the hash does match, the system is
rebooted, the new image is written to the appropriate sector,
and the bootstrap procedure started.

In the event of a critical failure, the server can send a com-
mand that flashes the original image to the appropriate lo-
cation and repeats the bootstrap procedure. Alternatively,
if desired, a complete custom image cand be sent at the
expense of increased network data usage.

2.5 Bootstrap
Bootstrapping the system involves loading all the scenarios
into memory. All the generic scenarios are stored in consec-
utive fixed width blocks with a header. The loader reads the
header of each block for a magic number to see if the block
contains a scenario and tests the checksum. If successful,
the settings pointer is checked and if needed, the settings

Flash storage

M
o
d
e
m

T
im

e

Schedule settings

Original rom image Restart Flash Procedure

Restart and Flash

Restart and run new rom

Write raw data into sector

Mutable rom image

Write raw data into sector

Verify hashes

Re-Initialize settings

…

Read/WriteFlow

Figure 5: Timeline of a ota flash and re-initialization
(left) with the flash layout (right)

block is initialized. Finally, the tasks of the scenario are run
and placed into a infinite wait state.

2.6 Conclusion
The inspiration for designing such a system derives from a
separate student project designing a floating sensor device,
intended for data gathering in the ocean. As such, proposed
implementation centers around the need for an embedded
autonomous system with the primary goal of collecting data
depending on detected conditions, available energy reserves,
and network availability or cost. The lifetime of such a de-
vice is expected to exceed a year. Therefore the system also
takes into account the need for remote over the air system
updates and changing of execution parameters.

Current anticipated technical difficulties, regarding a work-
ing implementation on an actual microcontroller, revolves
around physical memory or flash partitioning for remote up-
dates, memory allocation and number of tasks being able
to run or ques being able to exist as buffers and operating
data storage, and the ability to correctly estimate the power
available to the system for proper task execution.

3. REFERENCES
[1] R. Goyette. An analysis and description of the inner

workings of the freertos kernel. Carleton University, 5,
2007.

[2] J. Hutcheson and M. Laurin. Network flexibility of the
iridium (r) global mobile satellite system. 1995.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

70



Covering problems and Influence maximization

Gyöngyvér Vass
Institute of Informatics
University of Szeged

Szeged, Hungary
Vass.Gyongyver@stud.u-szeged.hu

Boglárka G.-Tóth
Institute of Informatics
University of Szeged

Szeged, Hungary
boglarka@inf.szte.hu

ABSTRACT
Influence maximization is a very popular problem in the
social sciences. It seeks a given number of seed points (ver-
tices) in a network to maximize the number of influenced ver-
tices starting from the seeds. Influencing may occur trough
the edges, which indicate the connection between people
(vertices). There are different ways to define influence, but
up to our knowledge, finding the seeds from which maximal
influence can be reached is a difficult task in general.

Coverage models belong to facility location problems, where
centers are to be located such that the covered demand
points (vertices in a graph within a given distance) are maxi-
mized. These models are motivated by problems where some
services are only available within a fixed radius, like ambu-
lances or fast food delivery. These problems are solvable for
large graphs, and our long term aim is to use the most appro-
priate and/or adjusted covering models for solving influence
maximization problems. As a first step, in this paper, we
compare influence maximization and coverage models and
analyze their differences.

As we will show, there are many similarities between the
models, however, the main difference is that covering is a
static action while influencing is dynamic. We show when
this difference can be resolved, and how different are the
results when not.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Graph TheoryNet-
work problems; G.1.6 [Mathematics of Computing]: Op-
timization

General Terms
Theory, application

Keywords

Covering models, Influence maximization, Mixed Integer
Programming

1. INTRODUCTION
The influence maximization problem explores that from a
given seed point how many other individuals can be reached
by the information in a social network. The transmitting
of the information and the terms of the transmitting can
be different, but usually, the capability of the influencing is
impressed by the weight or strength of the edge between two
points. Influence maximization is also known as information
diffusion. For a survey on the subject see [2, 3].

In facility location, the covering problem explores the point
or points that can cover other points in a demand network
within a given covering distance. For a good introduction
to facility location problems, see [1].

Up to the knowledge of the authors, these models have not
yet been compared in the literature, thus results in this pa-
per are completely novel. As covering models are well stud-
ied and efficient algorithms exist to solve large scale prob-
lems, it is interesting to investigate if the influence maxi-
mization problem (or its slight modification) can be solved
by any approach made for covering models. Thus, we aim
to compare influence maximization and covering models as
a first step.

2. INFLUENCE MAXIMIZATION
Formally, the influence maximization problem can be de-
fined as follows. There is a simple graph G = (V,E), where
the vertices of the graph v ∈ V represent the individuals and
the edges represent the connections between them. Here-
after we can regard as |V | = n and |E| = m, thus, in the
social network there are n people, and m connections be-
tween them. We assign a weight to each edge e ∈ E, which
will give us a probability: f(e) : E → [0, 1] the probability
that information can spread trough a given edge e, also it
can be seen as the strength of the relationship.

For the influence maximization model, there is a set S ⊂ V ,
from which the information will start, called seed set. The
cardinality of the set S is fixed, we will denote it with s
(s < n). This gives us a general diffusion model, where the
diffusion function is: σ(S) : V → [s, n], that is, the number
of vertices influenced by the seed set S. We seek for the seed
set maximizing the influence, i.e. maxS⊂V σ(S).

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

71DOI: https://doi.org/10.26493/978-961-7055-82-5.71-74



In the general model described above the processing of the
influencing can be differently modeled. The most known
models are the linear threshold model and the independent
cascade model, see [3], however for our purposes the so-called
triggering model is the most appropriate.

2.1 Triggering Model
In the triggering model, for each v ∈ V we independently
choose a random Tv triggering set according to some distri-
bution over subsets of its incoming neighbours. The Tv set
is a subset of the neighbours of vertex v. At the beginning
of the process, the seed set S will be active. An inactive
point becomes active at time instant t, if any element of the
selected triggering set Tv becomes active at time instance
t − 1. Formally, for v ∈ V \S if exists v′ ∈ Tv such that
v′ ∈ At−1, then v ∈ At.

It can be seen that in this model, probability and threshold,
used in the threshold model and the independent cascade
model [3], are replaced by an influencer set that represents
the way information is spread. This also means that this
model is deterministic from the point where the triggering
sets are chosen.

We have designed a mathematical model for this problem
so that it can be solved with a Mixed Integer Programming
(MIP) solver. As a parameter, we need the maximum num-
ber of steps of the influencing process, tmax. It is not known
beforehand but can be taken as the diameter of the graph,
which is a good upper bound for the run time. The rest of
the data is the graph itself and the triggering set for each
vertex Tj , which includes a subset of the neighbours of j and
also j.

Decision variables:

Zjt =

{
1, if point j is active at step t,
0, otherwise

max
∑
j

Zjtmax (1)

s.t.
∑
j

Zj0 = s (2)

∑
i∈Tj

Zit ≥ Zj,t+1 ∀j ∈ V, 0 ≤ t < tmax (3)

Variables Zjtmax gives us the resulting influenced nodes af-
ter tmax steps, thus the objective function is to maximize
their sum. Condition (2) sets the number of initial seeds to
s, while in (3) the influencing is defined. Namely, a vertex j
is influenced if its neighbours in Tj are influenced. By max-
imizing the influence, the objective guarantees that Zj,t+1

will always take value 1 if the left-hand side of (3) allows it,
so no lower bounding condition on Zj,t+1 is necessary.

3. COVERING PROBLEMS
Covering problems belong to the field of facility location.
We interpret it on a network and consider vertices as de-
mand points. Our goal is to place facilities or service units at
some vertices of the network that can cover as many demand

points as possible. Distance between two vertices is defined
by the length of the shortest path between the two points,
where edge lengths may be given or considered unit length.
The covering distance or covering radius is also given to the
problem, which tells us in what distance the new facility can
cover the demand points. In real life, it may depend on the
”size” of the facility, for example, in hospitals, its floor area
affects how many beds can be laid out and thus how many
patients can be accommodated, or on the maximal distance
a service can be realized (ambulance, fast food delivery for
example). Formally, we consider a simple graph G = (V,E)
with the usual notation. The concept of coverage can be de-
fined as follows. Our goal is either to maximize the covered
demand by a fixed number of companies or to cover the en-
tire network minimizing the number of centers, or building
costs. We will only discuss the first model, called maximal
covering.

3.1 Maximal Covering
In this model, we aim to maximize the number of covered
demand points locating a fixed number of facilities at the
vertices of the network. The number of facilities to be lo-
cated is s, and the covering radius R should also be known
for the problem. Formally, we can write the model as fol-
lows.

Parameters:

aij =

{
1, if point i can cover point j, i.e. d(i, j) ≤ R
0, otherwise

Decision variables:

Xj =

{
1, if a company at point j is located,
0, otherwise

Yj =

{
1, if point j is covered,
0, otherwise

Having these parameters and decision variables, the objec-
tive function and constraints can be written in the following
way.

max
∑
j

Yj (4)

s.t.
∑
j

Xj = s (5)

∑
i

aijXi ≥ Yj ∀j (6)

The objective of the model described in (4) is to maximize
coverage, which is the number of covered demand points.
Constraint (5) ensures that exactly s facilities are located.
Each demand point j has a constraint that ensures that
demand point j is covered only if there is a facility located
within the given distance, see (6). Knowing the coverage
distance, we can determine the locations which could cover
the demand point j.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

72



Table 1: Comparison of the models
Covering problem Influence maximization
graph of demand points and roads 3 social network (graph)
we want to locate facilities at demand points (vertices) 3 we want to find the seed points (vertices)
cover other demand points 3 influence other points
Covering: a demand point is covered if there is a company
for which their distance is less than the coverage distance

7 Influencing: a point is influenced, if any neighbour could
influence it with the probability of the edge

static, only facilities can cover 7 dynamic, anyone can influence
edge weights are distances 7 edge weights are probabilities
deterministic 7 stochastic

4. COMPARISON OF THE MODELS
Let’s first look at the similarities and differences between
the two models in general, summarized in Table 1.

Both models work with simple graphs and choose vertices
based on the weights of the edges. None of the models need
to add any new point, just choose one or more from the ex-
isting vertices (these are going to be the seeds or centers),
and either spread the information to the neighbours or be
the location for the new facilities. The aim of both models is
to reach as many points as possible. However, the definition
and the way the seeds reach the other vertices are different.
We count a point as covered if there is at least one facility
where their distance, that is the total weight of the shortest
path between the demand point and the new company, is less
than the given covering distance. We count a point as influ-
enced if at least one of its neighbours influence it with the
edge probability between them. Thus, one of the largest dif-
ference is that the maximal covering problem is static, while
the information diffusion is dynamic.You: Besides these, an-
other difference is, that in the covering model only the new
facility or facilities can cover the demand points, while in
the influence maximization problem every influenced point
can further influence its neighbours. In the first case, there
is a concrete distance, whilst in the second case, there are
only probabilities for the spreading, where the spreading can
take any number of steps. It also means that covering is
deterministic, as the coverage is always the same, while in-
formation diffusion is stochastic, as every time we generate
random values to simulate the spreading.

4.1 Comparison of a modified triggering
model and the maximal covering model

A modified triggering model may provide a solution to over-
come these differences. To repeat, in the triggering model,
each point independently selects a random set (triggering
set Tj) based on the distribution of subsets of the neigh-
bours. If one point in Tj becomes active, so does the point
j. This will result in two types of edges, ”live” and ”blocked”
as they belong to the triggering set or not. Now, considering
the sub-graph with only the ”live” edges, and restricting the
run time of the triggering model to R number of steps, the
problem equivalent to the maximal covering problem on the
sub-graph with covering radius R.

Therefore, we propose to modify the triggering model by
setting a maximum time for the spread of information, that
is the number of steps.

The modified triggering model can be solved by the opti-
mization problem in (1-3) where the maximum number of
steps is set to R, and Tj is the triggering set for each vertex,
being the set of all the neighbours of j.

Let us show that the model (1-3) is equivalent to the max-
imal covering model (4-6). As a first step, let us rewrite
the condition (6) without the parameter aij , only relying on
d(i, j), the distance of vertices i and j.

∑
i∈V :d(i,j)≤R

Xi ≥ Yj ∀j (7)

Now, in order to show the equivalence, we write the models
side by side, where in each line the corresponding parts are
given.

max
∑
j

Yj max
∑
j

ZjR (8)

s.t.
∑
j

Xj = s s.t.
∑
j

Zj0 = s (9)

∑
j∈V :d(i,j)≤R

Xj ≥ Yi

∑
i∈Tj

Zit ≥ Zj,t+1 (10)

∀i ∀j, 0 ≤ t < R

For the variables, Yj ≡ ZjR, and Xj ≡ Zj0, which makes
the equivalence in lines (8-9) obvious. In order to see that
the conditions in (10) are defining the same constraints, let
is rewrite the influence condition as follows.

Aggregating
∑

k∈Ti
Zk,t−1 ≥ Zit and

∑
i∈Tj

Zit ≥ Zj,t+1 we

obtain ∑
k∈Ti

∑
i∈Tj

Zk,t−1 ≥ Zj,t+1

and following this for all the R steps, the condition becomes∑
i0∈Ti1

∑
i1∈Ti2

· · ·
∑

iR−1∈Tj

Zi0,0 ≥ Zj,R

Now, if we take into account, that the above sums are only
adding those Zi0,0, where i0 ∈ Ti1 , i1 ∈ Ti2 , . . . , iR−1 ∈ Tj ,
the requirement is actually the same as d(i0, j) ≤ R. There-

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

73



fore the condition can be written as∑
j∈V :d(i,j)≤R

Zi,0 ≥ Zj,R ∀j (11)

which is equivalent to (7) changing the names of the vari-
ables.

4.2 Computational comparison of the models
To compare the models we implemented them in AMPL,
a mathematical programming language. We use (1-3) to
define the triggering model and (4-6) for the maximum cov-
ering model. The problems were solved by the commercial
optimization solver CPLEX.

Let us show the results on an example graph drawn in Figure
1. We run the maximum covering problem on this graph and
empirically showed that the same result is obtained when we
include all neighbours in the triggering sets.

In order to generate the triggering sets for the general model,
we use a selection rate r, which gives the proportion of the
neighbours to be selected to the triggering sets. If the se-
lection rate r = 1, we take every neighbours of each vertex
to its triggering set. If r < 1, we select randomly from the
neighbouring edges until we have the required number of
edges in the triggering sets.

Figure 1: Example graph with 39 nodes.

We summarized the results in Table 2. We set the selection
rate from 0.3 to 1 per 0.1. First, we set the cardinality of the
seed set |S| to 1 and the run time R to 4, and reported the
average of the objective value after 50 runs together with the
standard deviation for each selection rate. Not surprisingly,
decreasing the rate, the average number of influenced points
is also decreasing. The standard deviation is rather high,
which can be explained by the structure of the graph. There

Table 2: Computational result for the modified trig-
gering model with different number of seeds |S| and
run time R.

|S| = 1, R = 4 |S| = 2, R = 3 |S| = 3, R = 2
Rate Avg Dev Avg Dev Avg Dev
0.3 9.1 2.0 14.3 2.0 15.8 1.9
0.4 11.1 2.4 15.7 1.8 17.6 1.6
0.5 14.8 2.0 20.6 2.2 20.7 1.7
0.6 16.6 2.2 24.4 2.5 24.8 2.0
0.7 17.9 1.7 26.7 2.2 26.1 1.6
0.8 20.8 0.8 32.9 2.8 29.8 1.4
0.9 22.0 0.0 35.9 0.5 31.9 0.3
1.0 22.0 0.0 36.0 0.0 32.0 0.0

are long chains in the graph, like the paths 2-7 or 9-37,
from which any edges become blocked, the influenced set
can change easily. This also means that the seed is very
unstable between the different runs, even for high selection
rates.

In the next columns we report the results for |S| = 2 and
R = 3, and also for |S| = 3 and R = 2. The obtained results
are quite similar as before, although we can see that the
deviation of the results is smaller for the last case (|S| = 3,
R = 2). From these results, we can see that for high selection
rates the models give quite similar results in terms of the
objective value, but we have seen the seed sets are quite
different except for rate 1.

5. CONCLUSIONS
It has been intuitively shown that maximal covering and
influence maximization deal with a similar problem. The
research revealed to us what similarities and differences are.
In both cases, we start from a very similar problem and
have a similar goal. However, we also show that one of the
largest differences is the static nature of facility location and
the dynamic nature of information diffusion. We have seen
a solution to this by using the modified triggering model. It
is planned to compare the results of the models for a large
set of networks and to analyze more information diffusion
models in the near future.

6. ACKNOWLEDGMENTS
The project was supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.3-
VEKOP-16-2017-00002).

7. REFERENCES
[1] M. S. Daskin. Network and Discrete Location: Models,

Algorithms and Applications. John Wiley and Sons,
New York, 1995.

[2] V. Homolya. Analysis of information diffusion in
networks (in hungarian), 2017. Hungarian Conference
for Students (OTDK).

[3] G. D. Nittis and N. Gatti. How to maximize the spread
of social influence: A survey. CoRR, abs/1806.07757,
2018.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

74



Strong deep learning baseline for single lead ECG
processing

BOTOS Csaba
Pázmány Péter Catholic

University
1083 Práter utca 50/A

Budapest, Hungary
botos.csaba@hallgato.ppke.hu

HAKKEL Tamás
Pázmány Péter Catholic

University
1083 Práter utca 50/A

Budapest, Hungary
hakkel.tamas@hallgato.ppke.hu

GODA Márton Áron
∗

Pázmány Péter Catholic
University

1083 Práter utca 50/A
Budapest, Hungary

goda.marton.aron@itk.ppke.hu

REGULY István Z.
†

Pázmány Péter Catholic
University

1083 Práter utca 50/A
Budapest, Hungary

reguly.istvan@itk.ppke.hu

HORVÁTH András
‡

Pázmány Péter Catholic
University

1083 Práter utca 50/A
Budapest, Hungary

horvath.andras@itk.ppke.hu

ABSTRACT
Objective: Atrial fibrillation (AF) is one of the most common
serious abnormal heart rhythm conditions, and the number
of deaths related to atrial fibrillation has increased by an
order of magnitude in the past decades. We aim to create a
system, which can provide help for cardiologist, classifying
and highlighting important segments in recordings.

Approach: In this paper, we propose a novel approach for
AF detection using only a deep neural architecture with-
out any traditional feature extractor for real-time automated
suggestions of possible cardiac failures that can detect class
invariant anomalies in signals recorded by a single channel
portable ECG device.

Results: Detecting the four categories: Normal, AF, Other
and Noisy in terms of the official, F1 metric of hidden dataset
maintained by the organizers of PhysioNet Computing in
Cardiology Challenge 2017, our proposed algorithm has scored
0.88, 0.80, 0.69, 0.64 points respectively, and 0.79 on average.

Keywords
deep learning, residual network, fully convolutional network,
time-series, signal processing, ECG, atrial fibrillation, AF
detection

∗Corresponding author.
†Corresponding author.
‡Corresponding author.

1. INTRODUCTION
Cardiovascular diseases are responsible for the highest per-
centage of fatal outcomes among health problems in the
modern world. One of the most common and serious ab-
normal heart rhythm conditions is atrial fibrillation, which
affects about 2% to 3% of the population in Europe and
North America [1]. It is associated with an increased risk of
heart failure, dementia, and stroke. Additionally, the num-
ber of deaths related to atrial fibrillation has increased by an
order of magnitude in recent decades: growing from 29,000
in 1990 up to 193,300 in 2015. Researchers project that
by 2030 cardiovascular diseases will account for more than
three-quarters of deaths worldwide [2].

While it is essential to develop efficient algorithms to autom-
atize detection for monitoring patients with small portable
or wearable devices, and promising methods [3, 4] are al-
ready available, there is still no completely satisfying solu-
tion due to the low signal-to-noise ratio of portable ECG
devices, as well as the multiple types and the episodic man-
ner of atrial fibrillation. Unfortunately, detecting atrial fib-
rillation poses a significant challenge even for the most ex-
perienced cardiac exerts. As a result, a larger time window
has to be recorded and examined by experts to arrive at a
diagnosis.

To promote the solution and draw the attention of the scien-
tific community to this problem, a challenge was introduced
by PhysioNet [5], which targets the algorithmic classification
of atrial fibrillation signals. In this challenge, 8528 short,
single-channel recordings were provided produced by a low-
cost, portable device called KardiaMobile, manufactured by
AliveCor Inc. [6]. The length of the recordings ranged from
9.0 seconds to 61.0 seconds with an average of 32.5 seconds.
These samples were divided into four different classes: atrial
fibrillation, normal, noisy signals, and recordings from pa-
tients with other cardiac diseases, consisting of 771, 5154,
46, and 2557 samples, respectively.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

75DOI: https://doi.org/10.26493/978-961-7055-82-5.75-83



2. RELATED WORKS
Using clinically meaningful features, good quality ECG mea-
surements could be flawlessly classified by simply applying
traditional machine learning techniques (i.e. logistic regres-
sion, random-tree, support-vector-machines). On the other
hand, real-life samples often pose too much noise and high
variance that could mislead handcrafted rules, and yet state-
of-the-art approaches are still relying heavily on feature en-
gineering for AF detection. Accordingly, three of the four
winners of the CinC Cardiology 2017 challenge combined
only medically relevant feature-extractors and did not in-
corporate any neural network-based features [7, 8, 9].

Only one of the four winner approaches fused expert fea-
tures with other descriptors extracted by a neural network.
Hong et al.[10] proposed an algorithm concerning 64 fea-
tures learned by a Deep Neural Architecture, namely a time-
invariant hierarchical feature extractor network with 4 resid-
ual blocks [11] combined with a Bi-directional Long Short-
term Memory network (LSTM [12]) resulting in a 32 dimen-
sional continuous descriptor and a Uni-directional LSTM
trained separately using centerwave input to extract 32 time
related features. While the final classifier was applied on a
feature space with more than 600 dimensions, after ranking
by importance, the top 20 were made up of 17 deep learned
features and only the 3 remaining were clinically relevant or
external statistical features.

At the same time, many other participants of the Challenge
also used neural networks [13, 14, 15, 16] as feature detector
in addition to their traditional feature extractors. One of
them was Andreotti et al. [17], who compared their feature-
based classifiers to residual neural networks. They con-
cluded that their neural networks outperform their feature-
based classifiers, showing the strength of the purely neu-
ral network-based approach. Parvaneh et al. [18] improved
a dense convolutional network by signal quality index and
by the transformation of signal to the frequency domain.
Their approach was similar to ours as they applied a neural
network to extract frequency-domain features. Xiong et al.
[19] tried multiple methods with success, which we utilized
as well, including skip connections, and a neural network
trained on the spectrogram.

Normal AF Other Noise Avg.

Teijeiro et al. 0.90 0.85 0.74 0.56 0.83
Datta et al. 0.92 0.82 0.75 0.52 0.83
Zabihi et al. 0.91 0.84 0.73 0.50 0.83
Hong et al. 0.91 0.81 0.75 0.57 0.83

ours 0.88 0.80 0.69 0.64 0.79

Table 1: F1 scores on the hidden test set of the
CinC Challenge 2017. The winner algorithms (first
4 rows) excel in different tasks, since they utilize
different pools of features. An important note is
that in order to reduce prediction uncertainty many
have submitted ensembles which improve the overall
accuracy; however, does not reveal the true gener-
alizing capabilities of the underlying algorithm.

3. METHODS
3.1 Extending Dataset with Alternative Anno-

tation
We compete with human performance; however, we do not
know much about that. There is no better reference cur-
rently than human annotation (possibly by experts). Atrial
fibrillation is a human category, there is no mathematically
exact definition for it, thus we need humans to define its
characteristics. Unfortunately, these definitions are vague
and fuzzy from the algorithmic point of view as there is al-
ways an inherent ambiguity in all applications when we try
to approximate human definitions using mathematical mod-
els. To come around this problem we have created a dataset
in which every sample was annotated by multiple (in our
case two) experts to allow us measuring the variation of the
annotations as well.

We asked two doctors to help us: Dr Sz. Herczeg PhD stu-
dent in the field of cardiac arrhythmia (Expert-1), and Dr I.
Osztheimer cardiologist consultant (Expert-2), both work-
ing at the Heart and Vascular Center of Semmelweis Uni-
versity, in Budapest. Our goal was to examine the difference
between the decisions of experts of the Challenge, our doc-
tors, and a model trained on this dataset. By this, we aimed
to have an approximation of the accuracy of human perfor-
mance. Then we wanted to explore which features are the
most important ones our model is looking for. Finally, we
made some efforts to highlight these important features to
help human specialists.

To solve that task, we developed a website that displays the
recordings and provides a graphical user interface to anno-
tate the currently displayed recording. Asking our doctors
to use that website, we obtained an alternative annotation
that helped us to validate the data set, i.e. which the obvi-
ous cases are and which samples are too ambiguous to make
a clear diagnosis. The website picks recordings randomly, se-
lecting recordings from the four different classes uniformly.

3.2 Neural Network Architecture
Based on empirical evidence in the field of computer vision,
to reduce training time and to make the resulting detector
more robust, we applied recently published methods such
as ADAM[20], SELU[21], dilated convolutions [22], resid-
ual blocks[23] - for which we will provide a quick overview
in this section, and a more detailed description and sum-
mary of resulting improvements in appendix A. While sev-
eral image recognition baseline NN architectures (such as
ResNet and VGG) could be re-designed to fit the AF detec-
tion task, we developed domain-specific ensembles from core
building blocks of the aforementioned baseline architectures.
Alongside with the proposed networks, we have applied pre-
and post-processing steps: forked feature extraction on both
temporal and spectral domain, and merging encoded feature
vectors from different domains directly under the final clas-
sifier layer.

Despite the moderate improvements on the temporal and
spectral domains by the application of the advanced build-
ing blocks (Figure 1), the extension of the logistic regression
on multi-domain feature representations resulted in an archi-
tecture that could significantly outperform the most robust

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

76

http://physionet.itk.ppke.hu/
http://physionet.itk.ppke.hu/


preprocess

64 128 256

64
 ~

 1

64
 ~

 2

64
 ~

 4

po
ol

256

+

12
8 

~ 
1

12
8 

~ 
2

 p
oo

l
co

nc
at

256

+

12
8 

~ 
4

po
ol

co
nc

at

32

32
 ~

 4

32
 ~

 2

Multi-domain 
featuresco

nc
at

256

+

25
6 

~ 
1

25
6 

~ 
1

25
6 

~ 
1

F1=0.76

F1=0.77

F1=0.79

Figure 1: Learning representations from raw time-
series and equal length spectrogram.

networks on individual domains. We performed hyperpa-
rameter tuning in each domain separately, and then we se-
lected the best performing models for the joint optimization.

The upper branch operating on the raw signal is inspired by
EncodeNet [24] and uses consecutive residual blocks, which
operate with high numbers of channels on the downscaled
sample. The lower branch operating on spectral-domain is
the SkipFCN [25], which connects the early low-level rep-
resentations to latent layers to reduce over-fitting while sta-
bilizing gradient flow.

More importantly, we wanted our research to give valu-
able feedback to doctors. Therefore, we inspected features
that our trained AF detector has learned from samples pro-
vided by the Challenge to check whether these features were
matching with ones recognized by professionals. These re-
sults are analyzed in the next section. For a more detailed
description of the network architecture, see appendix A.

4. RESULTS
4.1 Main Results
Detecting the four categories: Normal, AF, Other and Noisy
in terms of the official, F1 metric of the challenge, our pro-
posed algorithm has scored 0.88, 0.80, 0.69, 0.64 points re-
spectively, and 0.79 on average. The fact that our F1 score
0.64 on Noise detection was even higher then the same score
of winning teams (see 2) shows that one is capable of reach-
ing performance close to the state of the art methods without
professional feature-engineering.

4.2 Ambiguity of Annotations
Using the website we designed for the alternative annotation,
Expert-1 annotated 500 recordings. Comparing that anno-
tation to the annotation of the cardiologists of the Challenge,
we found that the two annotations showed matching only in
65% of cases, underlining the fact that classification of data
set we worked on is challenging even for experts. Moreover,
it turned out that considering only those recordings when
both Expert-1 and the cardiologists of the challenge agreed
on the classification (i.e., in case of the ”evident recordings”)
the model also presented an almost identical (97.35%) clas-
sification.

To visualize the overlap between the 3 annotations we also
drew Venn diagrams, see Figure 2. We created diagrams for
each class and marked with red the number of the samples

Normal AF Other Noisy

3 7 95

10
104

12

1

4 0 5

23
70

4

1

22 2 25

73
43

5

6

0 1 19

36
102

6

4

Figure 2: Venn diagrams showing the overlap be-
tween the 3 annotations: the official labels created
by the cardiologists of the Challenge (green circle),
Expert-1’s annotation (blue circle) and the classifi-
cation of the neural network (red circle).

that were unambiguous for cardiologists (i.e., the classifi-
cation of Expert-1 and the cardiologists of the Challenge
was the same). It is clearly visible that for the vast major-
ity of these evident samples, the neural network predicted
the same class as the cardiologists did. Additionally, only a
tiny fraction of samples (their number is colored to green)
were classified by our model in such a way that none of the
cardiologists agrees with its prediction. Unfortunately, it
is obvious that no statistical analysis is possible due to the
low number of evaluated samples (500 compared to 8, 528
available samples) and because only one expert completed
that evaluation. However, these numbers strongly suggest
that our results might have some medical relevance as our
algorithm appears to mimic diagnosis of doctors.

4.3 Confidence of The Classifier
We created another web page to show recordings which were
the easiest or the hardest to classify for our algorithm. To
measure the ”confidence” of the decision, we used the out-
put of the last layer of our network (also called soft-max
layer) which has three neurons and each neuron produces
a number that correlates with the assumed probability of
belonging to the normal, AF, or other classes, respectively.
The fourth, noisy class is predicted by a separate network.
We fed all recordings to the model and picked the top 10
recordings which produced the highest value from the neu-
ron responsible for the normal class, and we repeated that
experiment for the AF class. We assumed that those record-
ings can also be interesting that were difficult to decide for
our model, and therefore we selected the worse 10-10 record-
ings that resulted in the lowest value from the neurons of the
normal and AF class. The reason why we excluded other
and noisy classes from examination are that these classes
are only technically necessary for defining the problem, but
they have no medical relevance regarding AF detection.

Then, we asked our experts to try to find some common fea-
tures of the samples classified into the same classes by our
model, and tell whether recordings classified ”confidently”
(i.e. with high output value) by our model were also evi-
dent for them. Similarly, we wanted to know whether they
found the least ”confidently” classified recordings obscure,
too. They answered independently from each other, but
their remarks were very similar in most aspects.

They both agreed that in the case of most confident pre-
dictions recordings had low noise contamination and this
contamination could be easily distinguished from the signal.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

77

https://physionet.org/challenge/2017/
https://store.alivecor.com/products/kardiamobile
http://arxiv.org/abs/1711.03892
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1511.07122
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1707.01836
http://www.deeplearningbook.org


Also, they both mentioned that the main difficulty of clas-
sifying recordings classified with the lowest confidence was
the high amplitude noise and the irregular baseline changes
as it made P-wave detection very difficult. In case of hardly
detectable P-waves, they both would rather look at RR in-
tervals to inspect whether they are regular or not.

In addition, Expert-2 noted that the model appeared to rec-
ognize the regularity of RR-intervals and used it as a strong
evidence of normal class (doctors also consider it as a sign
of healthy heart rhythm). Unfortunately, it was misleading
sometimes because some recordings exhibited both unusu-
ally regular RR-intervals and also some clear signs of AF,
and thus the model predicted normal class (with low confi-
dence) instead of AF. Besides, Expert-1 noticed that all of
the confidently classified AF recordings have arrhythmia ab-
soluta (i.e., the RR intervals are always changing), and most
of these recordings have high BPM value, while recordings
of low confidence prediction have much lower BPM on aver-
age. She mentioned that arrhythmia absoluta and BPM are
two of the most common features cardiologists are looking
for in real-life clinical practice (along with the absence of
P-wave). Thus, she acknowledged that our model appeared
to learne some medically relevant feature without explicitly
programming to do so.

4.4 Most relevant segments of recordings
We divided the signal to 50ms long segments and calculated
the output of the neural network for each of them. As we did
previously when we measured the ”confidence” of the deci-
sion of the model, we took again the output of the three neu-
rons of the soft-max layer, responsible for Normal, AF and
Other classes, respectively. For each 50 ms long segment,
the neuron that produced the highest value determined the
color of the background behind the current section. When
the neuron responsible for the normal class produced the
highest value, then the background was colored to green.
Similarly, the blue background indicated that the neuron of
the other class had the highest output value, and red in-
dicated atrial fibrillation. Additionally, higher values are
translated to darker colors, so the darkness of background
indicates the ”confidence” of the prediction at a certain seg-
ment. An example of these graphs can be seen in Figure 3.
By implementing that algorithm, we aimed to help doctors
by highlighting the most relevant regions of ECG recordings.
While our algorithm cannot substitute doctors, it might be
a good tool to speed up the evaluation of long ECG record-
ings while unburdening physicians drawing their attention
to the most important parts of the signal.

4.5 Computational Complexity
From the perspective of practical applicability in real-life
medicine, our method is not just designed for classification,
but performs well as a real-time detector by the nature of
Fully Convolutional Networks: after the initial warm-up de-
lay of 1.2 sec, we can generate new responses in less than
2 msec taking the last 20 second history into consideration.
If the evaluation is centralized and we allow to compute re-
sponses in batches, the time required per sample is less than
0.5 msec.

Figure 3: Example graph with colored background.
Sections with green background are detected as nor-
mal rhythm sections, red indicates AF, and other
arrhythmias are highlighted with blue.

5. CONCLUSION
While it is clear that current conditions demand expertise
in both domains of cardiology and machine learning, the
emergence of cheap hand-held devices creates a niche for
approaches capable of utilizing larger amount of data, and
that gives rise to adaptive and scalable algorithms, such as
Deep Neural Networks.

We carried out an extensive architecture and hyperparame-
ter search, and reported our findings on the Computing in
Cardiology 2017 Challenge. To contribute to the field, we
have open-sourced our project providing a general training
environment for practitioners to quickly evaluate baseline
performances on their dataset.

Our proposed algorithm provides visual reasoning and feed-
back for decision making that can significantly boost effi-
ciency of AF detection in collaboration with experts. For
deeper analysis of the performance, see appendix B. The
website of our project is available at http://physionet.

itk.ppke.hu/

Lastly, to help doctors to analyze long ECG recordings easily
and quickly, we designed a tool that colors the background
of the ECG plot highlighting the segments according to the
prediction of the model.

6. REFERENCES
[1] C. A. Morillo, A. Banerjee, P. Perel, D. Wood, and

X. Jouven, “Atrial fibrillation: the current epidemic,”
Journal of geriatric cardiology: JGC, vol. 14, no. 3, p.
195, 2017.

[2] B. B. Kelly, V. Fuster et al., Promoting cardiovascular
health in the developing world: a critical challenge to
achieve global health. National Academies Press,
2010.

[3] G. H. Tison, J. M. Sanchez, B. Ballinger, A. Singh,
J. E. Olgin, M. J. Pletcher, E. Vittinghoff, E. S. Lee,
S. M. Fan, and R. A. e. a. Gladstone, “Passive
detection of atrial fibrillation using a commercially
available smartwatch,” JAMA Cardiology, vol. 3, no. 5,
p. 409, 2018.

[4] S. P. Shashikumar, A. J. Shah, Q. Li, G. D. Clifford,
and S. Nemati, “A deep learning approach to

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

78



monitoring and detecting atrial fibrillation using
wearable technology,” 2017 IEEE EMBS International
Conference on Biomedical & Health Informatics
(BHI), 2017.

[5] “AF Classification from a short single lead ECG
recording: the PhysioNet/Computing in Cardiology
Challenge 2017.” [Online]. Available:
https://physionet.org/challenge/2017/

[6] 2019. [Online]. Available:
https://store.alivecor.com/products/kardiamobile

[7] T. Teijeiro, C. A. Garćıa, D. Castro, and P. Félix,
“Arrhythmia classification from the abductive
interpretation of short single-lead ECG records,”
CoRR, vol. abs/1711.03892, 2017. [Online]. Available:
http://arxiv.org/abs/1711.03892

[8] S. Datta, C. Puri, A. Mukherjee, R. Banerjee, A. D.
Choudhury, R. Singh, A. Ukil, S. Bandyopadhyay,
A. Pal, and S. Khandelwal, “Identifying normal, af
and other abnormal ecg rhythms using a cascaded
binary classifier,” 2017 Computing in Cardiology
(CinC), pp. 1–4, 2017.

[9] M. Zabihi, A. B. Rad, A. K. Katsaggelos, S. Kiranyaz,
S. Narkilahti, and M. Gabbouj, “Detection of atrial
fibrillation in ecg hand-held devices using a random
forest classifier,” in 2017 Computing in Cardiology
(CinC), Sept 2017, pp. 1–4.

[10] S. Hong, M. Wu, Y. Zhou, Q. Wang, J. Shang, H. Li,
and J. Xie, “Encase: An ensemble classifier for ecg
classification using expert features and deep neural
networks,” in 2017 Computing in Cardiology (CinC),
Sept 2017, pp. 1–4.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” arXiv:1512.03385
[cs], Dec. 2015, arXiv: 1512.03385. [Online]. Available:
http://arxiv.org/abs/1512.03385

[12] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, pp. 1735–80, 12
1997.

[13] P. Warrick and M. N. Homsi, “Cardiac arrhythmia
detection from ecg combining convolutional and long
short-term memory networks,” 2017 Computing in
Cardiology Conference (CinC), 2017.

[14] F. Plesinger, P. Nejedly, I. Viscor, J. Halamek, and
P. Jurak, “Automatic detection of atrial fibrillation
and other arrhythmias in holter ecg recordings using
rhythm features and neural networks,” 2017
Computing in Cardiology Conference (CinC), 2017.

[15] M. Limam and F. Precioso, “Atrial fibrillation
detection and ecg classification based on convolutional
recurrent neural network,” 2017 Computing in
Cardiology Conference (CinC), 2017.

[16] M. Zihlmann, D. Perekrestenko, and M. Tschannen,
“Convolutional recurrent neural networks for
electrocardiogram classification,” 2017 Computing in
Cardiology Conference (CinC), 2017.

[17] F. Andreotti, O. Carr, M. A. F. Pimentel, A. Mahdi,
and M. De Vos, “Comparing feature based classifiers
and convolutional neural networks to detect
arrhythmia from short segments of ecg,” 2017
Computing in Cardiology Conference (CinC), 2017.

[18] S. Parvaneh, J. Rubin, R. Asif, B. Conroy, and
S. Babaeizadeh, “Densely connected convolutional

networks and signal quality analysis to detect atrial
fibrillation using short single-lead ecg recordings,”
2017 Computing in Cardiology Conference (CinC),
2017.

[19] Z. Xiong, M. Stiles, and J. Zhao, “Robust ecg signal
classification for the detection of atrial fibrillation
using novel neural networks,” 2017 Computing in
Cardiology Conference (CinC), 2017.

[20] D. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014. [Online]. Available:
https://arxiv.org/abs/1412.6980

[21] G. Klambauer, T. Unterthiner, A. Mayr, and
S. Hochreiter, “Self-Normalizing Neural Networks,”
arXiv:1706.02515 [cs, stat], Jun. 2017, arXiv:
1706.02515. [Online]. Available:
http://arxiv.org/abs/1706.02515

[22] F. Yu and V. Koltun, “Multi-Scale Context
Aggregation by Dilated Convolutions,”
arXiv:1511.07122 [cs], Nov. 2015, arXiv: 1511.07122.
[Online]. Available: http://arxiv.org/abs/1511.07122

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[24] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann,
and E. Shechtman, “Controlling perceptual factors in
neural style transfer,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2017.

[25] J. Long, E. Shelhamer, and T. Darrell, “Fully
convolutional networks for semantic segmentation,” in
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.
[Online]. Available: http://www.cv-foundation.org/
openaccess/content cvpr 2015/html/Long Fully
Convolutional Networks 2015 CVPR paper.html

[26] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu, “WaveNet: A Generative Model
for Raw Audio,” arXiv:1609.03499 [cs], Sep. 2016,
arXiv: 1609.03499. [Online]. Available:
http://arxiv.org/abs/1609.03499

[27] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han,
W. J. Dally, and K. Keutzer, “Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and
<1mb model size,” CoRR, vol. abs/1602.07360, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07360

[28] K. Simonyan and A. Zisserman, “Very Deep
Convolutional Networks for Large-Scale Image
Recognition,” arXiv:1409.1556 [cs], Sep. 2014, arXiv:
1409.1556. [Online]. Available:
http://arxiv.org/abs/1409.1556

[29] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi,
C. Bourn, and A. Y. Ng, “Cardiologist-Level
Arrhythmia Detection with Convolutional Neural
Networks,” arXiv:1707.01836 [cs], Jul. 2017, arXiv:
1707.01836. [Online]. Available:
http://arxiv.org/abs/1707.01836

[30] I. Goodfellow, Y. Bengio, and A. Courville, “Deep
learning,” 2016, book in preparation for MIT Press.
[Online]. Available: http://www.deeplearningbook.org

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

79



APPENDIX
A. DETAILS OF THE NEURAL NETWORK
A.1 Activation Function
We have found that one major reason of over-fitting where
the network rather memorizes training samples than general-
izes was the non-linearity applied after parametrized layers,
the Rectified Linear Unit (ReLU): relu(x) = max(0, x)

The phenomenon of ”dead neurons” is a well known and
a frequent issue among networks that apply ReLU. Gener-
ally speaking, ReLU suppresses any inhibiting activation (by
clipping off negative values), excluding a notable portion of
neurons in the preceding layer from succeeding layers; thus,
activation spectrum of the layer will be saturated. Prac-
tically it is acceptable if different samples cause different
neurons to be mitigated; however, during train time some of
the neurons can become completely silent since the gradient
optimization prevents muted neurons to be trained (their
gradient is 0). Because of this property, there is a consider-
able risk that numerous nodes will not be able to influence
the response of classifier neurons.

Instead of ReLU, we used SELU activation function pub-
lished in Self-Normalizing Neural Networks [21]. By chang-
ing the activation function, we were able to overcome the
variance-problem of the networks applied, i.e. distance be-
tween training- and test-performance was reduced for iden-
tical architectures. For benchmarks on VGG models see
Figure 4.

On the left side of Figure 4 two separate trends are re-
vealed. Apparently, ReLU (bold lines) outperforms identi-
cal networks applied with SELU (light lines), almost reach-
ing ideal performance. On the right side of Figure 4: We
can see ReLU networks reaching their top test-performance
in early stages of training, and by continuing their train-
ing their accuracy decreased. In contrast, the accuracy of
SELU networks gradually improves throughout the entire
training. Naming convention: ADAM stands for gradient
optimization method, 16/19 for the number of layers that
have adjustable weights, and double/halved/quart suffixes
refers to the depth of each convolutional filter applied in
corresponding VGG baseline networks.

A.2 Dilated Convolution
Receptive field problem was another obstacle we encoun-
tered while setting up the baselines experiments. Simply by
changing the 2-dimensional convolutions (3x3 filters) to their
1-dimensional equivalent (1x9 filters), we ended up with a
network that could barely cover multiple heartbeats. Since
we have learned that atrial fibrillation can be episodic, it
was essential extending search space of architectures that
could cover entire episodes. By applying causal dilated con-
volutional filters used by [26], the receptive field was expo-
nentially increased further improving our models’ accuracy
without involving variance problems (like max-pooling does)
or sacrificing evaluation speed since applying dilated convo-
lution results in minimal overhead compared to the tradi-
tional operation. For the visual example see Figure 5.

A.3 Spectrogram

Representing a prerecorded signal to the frequency domain
with Fast Fourier Transform is a favoured approach in the
field of signal processing. Frequency analysis reveals each
frequency band’s presence in the signal, which may reveal
periodic and aperiodic traits of the sample. In practice when
a sample of the length N is transformed with FFT, it pro-
duces two arrays of values of the same length N representing
complex (Im and Re) valued frequency coefficients. Usu-
ally, these two arrays are merged by the following formula

r =
√
Im2 +Re2 resulting in Power Spectrum (PS), while

phase (being less informative about the signal) is omitted
thus making the transformation irreversible. The problem
with taking PS is that it discards temporal patterns (such
as Q-T, R-R distance etc.) making convolutional layers use-
less. Furthermore, PS is not casual by design, meaning that
the whole signal must be provided before obtaining PS. A
frequently applied technique in speech recognition is tak-
ing multiple FFT of short overlapping windows sliding over
input audio sample and concatenating short samples’ PS
into a multi-channel array. Another slight detail is to ap-
ply piece-wise natural logarithm on every element of the
resulting array to increase the variance of signal and pre-
vent strong frequencies repress ones which are weaker with
orders of magnitude.

The main advantage of that method is that it preserves time-
domain (temporal) patterns, while it reveals the presence of
different frequencies in the signal. Furthermore, there is only
a slight difference when we apply different weighting on in-
ternal values of the sliding window, while window size and
stride (i.e. inverse degree of overlapping) heavily influences
how long our resulting array will be and how many frequency
bands will represent it (i.e. resolution of PS at given time in-
stance). We have found it not just incredibly convenient, but
also surprisingly effective to choose the highest possible de-
gree of overlapping (window stridden by 1), and resampling
resulting spectrogram to match the length of the original
signal. Taking the original sample and redundant represen-
tation of ECG-recording (a 64 channel spectrogram) of the
same length allowed us to apply two concurrent NN on each
domain (temporal and spectral), and to concatenate result-
ing representations in-depth without being forced to reduce
temporal dimension since both feature vectors were of the
same length.

A.4 Multi-Domain Representation Learning
While both input spaces, temporal and spectral, had their
challenges, we saw that - by designing preprocess steps for
spectrogram training - the feature extractor network pro-
duced output of the same length as a time-domain equivalent
algorithm. That led us to try and concatenate these pre-
trained feature extractors together to test whether multi-
domain representation could help the final layer to overcome
issues specific to separate domain classification by comple-
menting each other. Indeed, we found that the general be-
haviour of the time-domain network was as follows: increas-
ing the accuracy of a single class at the expense of severe
forgetting in other classes disappeared using multi-domain
features. At the same time, spectral-domain networks strug-
gled with variance problems, even with extremely low capac-
ity. Also, networks trained in frequency domain were more
dependent on the choice of training / evaluating data. These
traits are omitted when feature extractors are working in

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

80

https://github.com/botcs/itk-physionet-17


Figure 4: Mean F1 train accuracy

Dilated

Original

Figure 5: Using the same number of parameters at
each node (2) with dilated convolutions, we can in-
crease receptive field exponentially instead of lin-
early expanding receptive field of traditional convo-
lutions

FFT sliding window FFT
TIME

log-spectrogram

Figure 6: Using stride of 1 for 255 wide FFT win-
dows resulted in almost identical length of original
sample with 128 channels. In order to have a com-
pletely matching size in temporal dimension (hori-
zontal axis), we resampled the log-spectrogram with
nearest-neighbour interpolation.

parallel as well. For a detailed description of our proposed
model for CinC Challenge of 2017, see Figure 1.

A.5 Training
Each network was trained for 420 epochs on 80% of the
challenge dataset, which we have resampled for each training
instance. Depending on the complexity of the underlying
architecture, training took 3-12 hours on a K80 GPU. Our
proposed algorithm is designed in such a way that applied
operations are completely causal; thus, the input can be
processed on-line (also in real-time) without the presence of
a complete sequence.

Inspired by their simplicity we have re-designed the classic
ImageNet models: SqueezeNet v1.1 [27], VGG-16/19 [28],
ResNet18/152 [23]. We also re-implemented a network pro-
posed by Rajpurkar et al. [29], which was developed to
perform well on a more balanced dataset of over sixty thou-
sand single lead ECG samples, annotated by lead expert
cardiologists. We reference this network in this writing as
StanfordNet.

Deep representation learning algorithms tend to outperform
humans when the network is shown more data than its op-
ponent during its lifetime. While the problem itself could
be a truly complex task from the perspective of traditional
algorithmic solutions, it is less difficult with human refer-
ences.

Referring to the rule of thumb mentioned in [30], it is in-
creasingly evident that state-of-the-art supervised training
methods can reach or even exceed human performance in
general when 5000 samples are provided per class, and the
overall dataset contains millions of training samples. That
rule seems to apply to our case as well. For example, the
dataset provided by the organizers of the Challenge contains
over five thousand samples of healthy sinus-rhythm samples
for which mean of test F1 scores are above 0.90, but con-
sidering that the whole training dataset contains only 8528
samples in total, it implies that getting deep neural networks
to work requires a few workarounds. The usual recipe for
training classifiers containing tens of millions of parameters

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

81



Figure 7: Results on running 18 different network
architectures on a manually designed difficult train-
ing/test set separation (Blue), and on a random split
in average (Green)

tells us that it is beneficial to find a model first that can be at
least over-fitted on the training data, and then incrementally
decrease degree of complexity by removing layers and shrink-
ing the number of convolutional filters, while applying more
and more regularization to avoid high variance. During the
development phase we observed that by the time the network
could not be improved further on the training set, it had al-
ready dropped in performance on the test set. Data prepa-
ration, training and evaluating scripts required to reproduce
the following results are available at our open-source repos-
itory: https://github.com/botcs/itk-physionet-17

B. PERFORMANCE ANALYSIS

Instability. When we manually set random seeds for sepa-
rating samples into training-test-evaluation classes, we came
across a very interesting phenomenon: one can construct a
train-evaluation set separation such that outcome can be
extremely encouraging, over avg. F1=0.9 score, and for
another choice, it could lead to much worse results, avg.
F1=0.5, having every other detail of the training environ-
ment fixed. When we retrained 18 randomly chosen net-
works from our baseline evaluations on a training set which
probably covered all problematic samples that may lie close
to the decision boundary, independently of the underlying
architecture results got better. Using exactly the same envi-
ronment, with the same initialization of weights on a differ-
ent choice of training samples, test performance seemed to
have an upper bound - even our best-performing networks
could not perform better than F1=0.6. For comparison see
Figure 7. In Figure 8, we analyze how sensitive is our most
robust model: we do 10-fold cross-validation, where each
training is evaluated with two different seeds to eliminate
the noise coming from random initializing the network.

18 networks initialized and optimized with the same fixed
random seed on different training sets, which we have found
randomly splitting the original dataset, reveals the greatest
challenge in AF detection; namely, there is a tiny set of
specific samples that is crucial for generalization.

Figure 8: Test results computed from 10-fold cross
validation using the best performing model.

Many competitors reportedly have overcome that issue by
applying a common technique used in deep learning compe-
titions: final prediction is not evaluated by a single network,
but by ensembles of neural networks to make the algorithm
more robust against the biased dataset. In groups where
expert supervision of training data set was available, signif-
icant improvement was reported when ambiguous samples
were removed from the already moderate-sized data set.

Note: The bands correspond to cover 99% and 68% of test
scores and show that when certain training samples are miss-
ing, networks fail to generalize, and they are only able to
reach a test score F1=0.45 with a small deviation, mak-
ing it almost impossible to measure improvements on dif-
ferent architectures and optimization methods. At the same
time, when essential training examples are available, we have
space for experiments, shown by the increased width of the
band.

avg. F1 score 0.70 0.72 0.73 0.72 0.76 0.78 0.74 0.74 0.75 0.81 0.73

SELU X X X X X
Dilation X X X X X X X X

SqueezeNet 1.1 X X X
VGG 19 X X X

StanfordECG X X X
EncodeNet (ours) X

SkipFCN (ours) X

Raw signal X X X X X X X X X X X
Log-spectrogram

Table 2: The average F1 score results in time domain

avg. F1 score 0.65 0.63 0.63 0.69 0.74 0.75 0.53 0.51 0.54 0.68 0.79

SELU X X X X X
Dilation X X X X X X X X

SqueezeNet 1.1 X X X
VGG 19 X X X

StanfordECG X X X
EncodeNet (ours) X

SkipFCN (ours) X

Raw signal
Log-spectrogram X X X X X X X X X X X

Table 3: The average F1 score results in spectral
domain

In Table 2 a summary of incremental improvements achieved
on original time-series is visible. Among over 100 different
alternative architectures, here we list the most revealing and
instructive experiences of ours.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

82



In Table 3 the average F1 score results is visible in the spec-
tral domain. Despite that different paths led us to the archi-
tecture of SkipFCN, the main drive was to achieve compa-
rable performance to time-domain models since input space
was heavily redundant. For keeping our evaluations sym-
metric and providing a reference for evaluating identical ar-
chitectures on the spectral domain, we list results of the
same networks shown in Table 2.

Computational requirements. The delay and complex-
ity of our proposed model, depicted in Figure 1 is mainly
characterized by the Fourier transform, and the complexity
of the two parallel branches, working on time and frequency
domain respectively. In total the model has fewer than 2
million trainable parameters, that takes up 8 MB storage
using 32-bit precision representation. We performed exten-
sive time complexity measurements on the proposed model,
using a single P100 Graphics Processor Unit. For the train-
ing, we used the mini-batch size of 64 with early-stopping
after 100 epochs on the training data. On average, each
training took 1 hour before reaching a peak of accuracy. In
real-time operation (inference) using Fourier Transform win-
dow size of 255, the model requires 354 measurement points
to evaluate the first response. Based on the sampling rate of
the recording device (300 Hz) that translates to a 1.18s ef-
fective delay. Furthermore, we measured how fast the model
evaluates a 20s window. Without computing samples in par-
allel, the time-domain branch takes 1.33 ms ± 821 ns and
the frequency-domain branch takes 1.54 ms ± 1.48 µs to ex-
tract features, in total the inference takes 1.68 ms ± 2.11
µs. Using a batch size of 100 we can parallelize the compu-
tations with a sub-linear increase in time cost: 18.6 ms ±
21.9 µs on time-domain, 32.1 ms ± 127 µs on the frequency
domain, 39.1 ms ± 482 µs when branches are computed in
parallel.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

83





Primerjava osnovnega algoritma po vzoru obnašanja
netopirjev in njegove hibridne različice HBA

Žan Grajfoner
Fakulteta za elektrotehniko,
računalništvo in informatiko

Koroška cesta 46
2000 Maribor, Slovenija

zan.grajfoner@student.um.si

Lucija Brezočnik
Fakulteta za elektrotehniko,
računalništvo in informatiko

Koroška cesta 46
2000 Maribor, Slovenija

lucija.brezocnik@um.si

POVZETEK
V prispevku smo se osredotočili na algoritme inteligence
roja, ki črpajo navdih iz obnašanja roja živali v naravi. Pri-
merjali smo osnovni algoritem po vzoru obnašanja netopir-
jev in njegovo hibridno različico. Raziskali smo razlike med
osnovnima arhitekturama obeh algoritmov, pripadajoče pa-
rametre, kot tudi nekaj drugih hibridnih različic algoritma
po vzoru obnašanja netopirjev. Primerjavo smo izvedli na
praktičnem primeru optimizacije desetih testnih funkcij na
treh različnih dimenzijah problema (10, 20, 30). Prav tako
smo raziskali vpliv različnih velikosti populacije (20, 30, 50)
pri obeh algoritmih. Ugotovili smo, da so rezultati optimi-
zacije hibridne različice algoritma bolǰsi od osnovne različice
algoritma.

Kjučne besede
algoritem po vzoru obnašanja netopirjev, evolucijski algo-
ritmi, hibridizacija, inteligenca roja, računska inteligenca

1. UVOD
Algoritmi po vzoru iz narave posnemajo delovanje različ-
nih naravnih in bioloških sistemov [17, 3]. Večinoma se
uporabljajo za reševanje kompleksnih optimizacijskih pro-
blemov [3], kot so na primer sestava urnikov, izbira naj-
bolǰse lokacije za postavitev antene in iskanje najkraǰse poti
na grafu. Med tovrstne algoritme uvrščamo tudi algoritme
inteligence rojev [9], ki so dandanes prisotni v številnih re-
alnih aplikacijah [8].

Inteligenca roja (angl. Swarm Intelligence, kraǰse SI) [1,
2] predstavlja študije kolektivnega obnašanja množičnih sis-
temov, ki se razvijajo s časom. Takšne sisteme v naravi
tvorijo razni insekti (npr. čebele in mravlje) in druge živali
(npr. ptice in ribe). Predstavimo primer inteligence roja na
čebelah [7]. Čebela sledi splošnim in enostavnim pravilom,
vendar lahko v roju z drugimi čebelami rešuje kompleksneǰse
naloge, kot je na primer izbira prave lokacije za njihov novi

dom. Več izvidnǐskih čebel odleti na iskanje potencialne lo-
kacije, vendar dokončno odločitev o najprimerneǰsi lokaciji
sprejmejo skupaj.

V prispevku, ki je povzetek diplomskega dela [6], se bomo
osredotočili na algoritem po vzoru obnašanja netopirjev (angl.
Bat Algorithm, kraǰse BA), ki ga uvrščamo v skupino SI.
Obstoječe študije so pokazale, da lahko algoritem BA hitreje
doseže bolǰse rezultate pri reševanju optimizacijskih proble-
mov glede na njegove predhodnike, kot je na primer genet-
ski algoritem [10]. Algoritem BA posnema naravni fenomen
netopirjev – eholokacijo. Netopirji med letenjem spuščajo
visoke zvoke, kakršnih človeško uho ne zaznava. Zvok po-
tuje skozi zrak kakor val in se odbije od vsakega objekta.
Netopirji poslušajo odbiti zvok in na podlagi tega določijo
oddaljenost, velikost ter obliko predmeta.

Ker osnovni algoritem BA ni primeren za reševanje vseh dru-
žin problemov, so različni avtorji predlagali več hibridnih
različic, ki razširjujejo osnovni algoritem BA z mehanizmi
drugih algoritmov [15, 11, 13]. Prav tako nekateri avtorji
navajajo različne nastavitve nadzornih parametrov, kot so
na primer velikost populacije in minimalna/maksimalna fre-
kvenca.

Glavni cilj prispevka je primerjava osnovnega algoritma BA,
ki ga je predlagal Yang [16], in hibridnega algoritma po vzoru
obnašanja netopirjev (angl. Hybrid Bat Algorithm, kraǰse
HBA), ki ga so ga predlagali Fister in ostali [5]. Algoritma
bomo uporabili pri optimizaciji več testnih funkcij in s po-
močjo eksperimenta skušali odgovorili na dve raziskovalni
vprašanji (RV).

RV1: Ali hibridni algoritem po vzoru obnašanja netopir-
jev dosega bolǰse rezultate kot osnovni algoritem po vzoru
obnašanja netopirjev pri večji velikosti populacije?

RV2: Ali hibridni algoritem po vzoru obnašanja netopirjev
dosega bolǰse rezultate kot osnovni algoritem po vzoru ob-
našanja netopirjev pri optimizaciji funkcij vǐsjih dimenzij?

V drugi sekciji predstavimo algoritem BA in njegovo hibri-
dno različico, tretja sekcija je namenjena orisu zasnove eks-
perimenta, analiza dobljenih rezultatov pa je zbrana v četrti
sekciji. Prispevek strnemo v peti sekciji in podamo smernice
za prihodnji razvoj.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

85DOI: https://doi.org/10.26493/978-961-7055-82-5.85-90



2. ALGORITMI PO VZORU OBNAŠANJA
NETOPIRJEV

V sekciji 2.1 predstavimo osnovno različico algoritma BA, v
sekciji 2.2 njegovo hibridno različico, sekcija 2.3 pa zajema
predstavitev nekaterih drugih hibridnih različic BA.

2.1 Algoritem po vzoru obnašanja netopirjev
Algoritem po vzoru obnašanja netopirjev spada v družino
algoritmov SI in ga je leta 2010 razvil Xin-She Yang na uni-
verzi v Cambridgeu [16]. Njegov namen je bil razviti enosta-
ven in učinkovit algoritem, ki bi bil primeren za uporabo v
različnih aplikacijah za reševanje optimizacijskih problemov.
V algoritmu je poskušal posnemati pojav eholokacije pri mi-
kronetopirjih. Originalni algoritem BA obravnava netopirje
kot roj, ki se pomika po prostoru in ǐsče svoj plen. Obna-
šanje netopirjev je kompleksno in zahtevno, zaradi česar je
neposredni prenos v t. i. računalnǐski sistem prezahteven.
Zato je njihovo obnašanje opisal v algoritmu z naslednjimi
poenostavljenimi pravili [4]:

1. Vsi netopirji uporabljajo eholokacijo za spremljanje
razdalje do ciljnih objektov.

2. Netopirji pri iskanju hrane letijo naključno s hitrostjo
vi na pozicijo xi s fiksno frekvenco fmin, variabilno
valovno dolžino λi in glasnostjo Ai. Samodejno lahko
prilagajajo valovno dolžino (ali frekvenco) pulzov, ki
jih oddajajo, in prilagajajo raven oddajanja pulzov
r i ∈ [0, 1] glede na bližino cilja.

3. Glasnost variira od največje (pozitivne) A0 do mini-
malne vrednosti Amin.

BA vzdržuje populacijo virtualnih netopirjev med delova-
njem. Vsak položaj netopirja predstavlja rešitev problema
in vsaka rešitev problema je predstavljena kot vektor realnih
števil (enačba 1):

x(t) = {x(t)i,1, . . . , x
(t)
i,D}, za i = 1, . . . , Np, (1)

v kateri D označuje dimenzijo problema, t predstavlja tre-
nutno generacijo, Np pa število virtualnih netopirjev v po-
pulaciji. Vsak vektor določa položaj virtualnega netopirja
v iskalnem prostoru. Netopirji se gibajo v območju proti
učinkoviteǰsim rešitvam in pri tem odkrivajo nova obetavna
področja. Algoritem BA omogoča dve strategiji preiskova-
nja.

Prvo strategijo za gibanje netopirjev prikazujejo naslednje
enačbe 2:

f t
i = fmin + (fmax − fmin)β,

vt+1
i = vti + (xti − xtbest)f t

i ,

xt+1
i = xti + v

(t+1)
i

(2)

V intervalu f t
i ∈ (fmax, fmin) se spreminja frekvenca pulza.

Iz uniformne porazdelitve β ∈ [0, 1] se generira naključno

število, ki definira velikost izhodnega pulza. Parameter xtbest
definira trenutno najbolǰso globalno pozicijo oziroma rešitev.

Druga strategija izbolǰsa trenutni položaj virtualnega neto-
pirja po enačbi 3:

xt = xtbest + εAt
iϕ, (3)

v kateri ϕ ∈ [0, 1] definira naključno število iz Gaussove
distribucije s srednjo vrednostjo 1 in standardnim odklonom
0, ϕ > 0 je skalirni faktor in At

i predstavlja glasnost.

Ta strategija je namenjena izkorǐsčanju najbolǰse rešitve, saj
je usmerjena k raziskovanju območja najbolǰse rešitve in po-
nazarja vrsto naključnega sprehoda (angl. Random Walk
Direct Exploitation, kraǰse RWDE) [4]. Algoritem BA nad-
zorujeta dva parametra in sicer stopnja pulza ri in glasnost
Ai. Matematično lahko to prikažemo z enačbo 4:

A
(t+1)
i = αAt

i, r
t
i = r0i [1− exp(−γε)], (4)

v kateri α in γ predstavljata konstante. Obe vplivata na
stopnjo konvergence algoritma [16].

Psevdokoda algoritma BA je prikazana v algoritmu 1.

Algoritem 1 Algoritem BA

Vhod: populacija xi = (xi,1, xi,2, . . . , xi,D) for i =
1 . . . Np, MAX FE.
Izhod: najbolǰsa rešitev xbest in njena vrednost fmin

1: inicializacija populacije;
2: eval = oceni novo populacijo;
3: fmin = najdi najbolǰso rešitev (xbest);
4: while ustavitveni pogoj ni dosežen do
5: for i = 1 to Np do
6: generiraj novo rešitev (xi);
7: if rand(0,1) > ri then
8: y = izbolǰsaj najbolǰso rešitev (xbest);
9: end if

10: fnew = oceni novo rešitev (y);
11: if fnew ≤ fi and rand(0,1) < Ai then
12: xi = y;
13: fi = fnew;
14: end if
15: fmin = poǐsči najbolǰso rešitev (xbest);
16: end for
17: end while

2.2 Hibridni algoritem po vzoru obnašanja ne-
topirjev

Hibridni algoritem po vzoru obnašanja netopirjev je eden
od prvih hibridnih različic BA. HBA je hibridiziran z muta-
cijskimi strategijami diferencialne evolucije [12]. Strategija
lokalnega iskanja osnovnega algoritma BA je zamenjana s
strategijo mutacije DE, ki je prikazana v algoritmu 2.

V algoritmu HBA se na začetku izberejo tri naključne rešitve
v populaciji. S pomočjo diferencialne evolucije“DE/rand/1/

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

86



bin” generiramo novega potomca y. Izbran potomec je pod-
vržen delovanju normalne selekcije v algoritmu BA [4].

Algoritem 2 Lokalno iskanje v algoritmu HBA

1: if rand(0,1) > ri then
2: ri=1...3 = rand(0,1) * Np + 1;
3: n = rand(1, D);
4: for i = 1 to D do
5: if rand(0,1) < CR or n == D then
6: yn = xr1,n + F ∗ (xr2,n + xr3,n);
7: n = (n+ 1)%(D + 1);
8: end if
9: end for

10: end if

2.3 Primeri ostalih različic hibridnega BA
Prednost BA je, da lahko zelo hitro doseže konvergenco v
začetni fazi. Kadar je potrebna hitra rešitev, se algoritem
BA izkaže kot zelo učinkovit. Če pa mu dovolimo prehiter
preklop v fazo izkorǐsčanja, tako da se glasnost A in impulz
r prehitro spremenita, lahko to povzroči stagnacijo v zače-
tni fazi. Za izbolǰsanje učinkovitosti in adaptacije osnovnega
algoritma so številni avtorji ustvarili nekaj različic. Kot pri-
mer lahko omenimo avtorje v [15], ki so hibridizirali osnovni
algoritem BA z algoritmom iskanja harmonij (angl. Har-
mony Search), avtorji v [11] so hibridizirali osnovni algori-
tem BA z algoritmom ABC (angl. Artificial Bee Colony),
avtorji v [13] pa so hibridizirali osnovno različico algoritma
BA z algoritmom kresnic (angl. Firefly Algorithm).

3. OPIS EKSPERIMENTOV
V sekciji opǐsemo vzpostavitev razvojnega okolja in vključi-
tev programske knjižnice NiaPy ter definiramo testne funk-
cije, ki smo jih uporabili v eksperimentih.

3.1 Vzpostavitev razvojnega okolja
Program je bil napisan v odprtokodnem programskem jeziku
Python v integriranem razvojnem okolju PyCharm (IDE:
Jetbrains). Pri razvoju smo uporabili odprtokodno knjižnico
Python microframework for building nature-inspired algori-
thms (kraǰse NiaPy) [14], katere namen je enostavneǰsa in
hitreǰsa uporaba algoritmov po vzorih iz narave.

3.2 Testne funkcije
Eksperimente smo izvedli na naslednjih desetih različnih te-
stnih funkcijah [14]: Ackley, Griewank, Levy, Rastrigin, Ridge,
Rosenbrock, Salomon, Schwefel, Sphere in Whitley.

4. REZULTATI
V nadaljevanju je prikazana statistika zagonov testnih funk-
cij. V stolpcu Alg. imamo kratice imen algoritmov, ki jih
testiramo, in sicer algoritma BA in HBA. V stolpcu Nast.
so prikazane nastavitve parametrov, ki smo jih spreminjali
pri zagonih eksperimentov. Spreminjali smo dva parametra:
dimenzijo testnih funkcij in velikost populacije. D pred-
stavlja dimenzijo problema testnih funkcij. Testne funkcije
smo zaganjali na treh dimenzijah (10, 20, 30). Vǐsja kot je
dimenzija, zahtevneǰsa je optimizacija. Velikost populacije
predstavlja število kandidatnih rešitev, ki so uporabljene v
iskalnem prostoru. Uporabili smo tri različne velikosti popu-
lacij (20, 30, 50). Preostale vrednosti nadzornih parametrov

so: Np = y, A = 0,5, r = 0,5, fmin = 0,0, fmax = 2,0,
F = 0,5 in CR = 0,9.

Vsako konfiguracijo smo zagnali 25-krat, ustavitveni pogoj
pa je bil 1000 * D ovrednotenj funkcije uspešnosti.

Stolpec Min predstavlja najbolǰso dobljeno rešitev, stolpec
Max predstavlja najslabšo dobljeno rešitev, stolpec Mean
pa predstavlja povprečje dobljenih rešitev. Stolpec Median
predstavlja sredǐsče med zgornjo in spodnjo mejo dobljenih
rešitev, stolpec Std pa predstavlja izračun standardnega od-
klona iz njih.

Tabela 1: Rezultati Ackley
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
14,304 18,630 17,003 17,116 1,187

HBA 2E-06 2,013 0,782 1,155 0,809
BA D=10,

Np=30
13,772 18,273 16,701 17,002 1,189

HBA 2E-06 3,404 0,908 1,155 1,035
BA D=10,

Np=50
10,837 18,760 16,925 17,192 1,607

HBA 2E-06 2,580 0,999 1,155 0,987
BA D=20,

Np=20
15,997 18,960 17,970 18,034 0,690

HBA 2,171 5,473 3,494 3,490 0,935
BA D=20,

Np=30
16,959 19,360 18,032 18,154 0,679

HBA 1,155 5,240 3,240 3,222 1,020
BA D=20,

Np=50
16,553 19,120 17,861 17,948 0,710

HBA 4E-07 5,650 3,070 3,223 1,203
BA D=30,

Np=20
15,879 18,940 17,950 18,062 0,650

HBA 3,222 8,236 5,300 4,919 1,504
BA D=30,

Np=30
17,211 19,360 18,202 18,162 0,529

HBA 2,887 10,020 6,021 6,182 1,831
BA D=30,

Np=50
17,255 19,440 18,135 18,003 0,510

HBA 2,580 9,475 5,857 5,503 1,913

Tabela 2: Rezultati Griewank
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
1,856 4,835 3,244 3,260 0,757

HBA 0,027 0,577 0,151 0,140 0,115
BA D=10,

Np=30
1,575 4,887 3,122 3,064 0,788

HBA 1E-11 0,344 0,122 0,116 0,069
BA D=10,

Np=50
1,736 4,698 3,083 3,217 0,876

HBA 0,027 0,310 0,124 0,106 0,074
BA D=20,

Np=20
3,159 10,540 6,852 6,640 1,678

HBA 5E-14 0,101 0,033 0,025 0,035
BA D=20,

Np=30
4,725 9,525 6,718 6,560 1,242

HBA 2E-14 0,096 0,027 0,020 0,025
BA D=20,

Np=50
3,953 11,700 7,220 7,249 1,741

HBA 1E-13 0,118 0,026 0,020 0,028
BA D=30,

Np=20
5,226 18,170 10,970 10,501 3,019

HBA 1E-12 0,127 0,031 0,025 0,035
BA D=30,

Np=30
6,596 16,460 10,993 10,982 2,738

HBA 2E-12 0,107 0,025 0,015 0,027
BA D=30,

Np=50
7,005 15,310 10,785 10,685 2,348

HBA 1E-12 0,069 0,020 0,012 0,021

Iz vseh zagonov optimizacij testnih funkcij (tabele 1-10) je
razvidno, da je hibridna različica algoritma po vzoru obnaša-
nja netopirjev učinkoviteǰsa od osnovne različice algoritma.
Naša raziskava je tako potrdila že obstoječe raziskave [5].

Dodatno smo preizkusili delovanje obeh algoritmov z raz-

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

87



Tabela 3: Rezultati Levy
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
8E-07 1,002 0,190 0,032 0,320

HBA 3E-15 0,182 0,022 4E-14 0,047
BA D=10,

Np=30
5E-07 1,793 0,249 0,005 0,475

HBA 4E-16 0,851 0,041 4E-14 0,170
BA D=10,

Np=50
9E-07 1,215 0,124 0,003 0,307

HBA 8E-16 0,942 0,049 1E-14 0,188
BA D=20,

Np=20
4E-06 4,734 0,797 0,0003 1,253

HBA 2E-16 2,065 0,286 0,091 0,514
BA D=20,

Np=30
4E-06 3,430 0,683 1E-05 1,024

HBA 4E-16 1,701 0,278 0,182 0,388
BA D=20,

Np=50
3E-06 4,842 0,776 2E-05 1,157

HBA 2E-16 1,123 0,272 0,091 0,382
BA D=30,

Np=20
1E-05 6,243 1,706 1,715 1,446

HBA 2E-14 2,246 0,637 0,272 0,676
BA D=30,

Np=30
8E-06 4,614 1,179 0,907 1,369

HBA 1E-14 2,065 0,466 0,272 0,525
BA D=30,

Np=50
1E-05 5,005 1,094 0,851 1,473

HBA 6E-15 2,156 0,496 0,272 0,586

Tabela 4: Rezultati Rastrigin
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
15,920 77,610 45,052 44,773 15,620

HBA 5,970 31,840 17,073 16,914 7,416
BA D=10,

Np=30
18,904 80,590 48,236 47,758 19,660

HBA 5,970 38,800 16,312 14,742 6,937
BA D=10,

Np=50
18,904 79,600 41,828 38,804 16,340

HBA 5,970 28,850 16,079 15,919 4,880
BA D=20,

Np=20
44,775 153,200 87,000 81,588 26,970

HBA 17,909 62,680 42,107 45,768 13,240
BA D=20,

Np=30
36,815 161,200 88,712 87,558 31,680

HBA 21,889 80,590 49,827 47,758 14,730
BA D=20,

Np=50
24,876 170,100 75,339 70,643 32,670

HBA 22,884 91,540 48,992 47,758 14,730
BA D=30,

Np=20
67,661 242,800 143,120 148,250 46,420

HBA 38,803 137,400 78,647 76,612 28,770
BA D=30,

Np=30
82,584 241,800 136,910 120,390 47,600

HBA 42,783 130,300 73,348 74,622 21,150
BA D=30,

Np=50
59,700 222,900 126,680 123,380 37,490

HBA 38,803 134,400 77,450 77,607 20,570

ličnimi nastavitvami populacije. Eksperimenti so pokazali,
da:

• velikost populacije pri obeh uporabljenih algoritmih
nima enakega vpliva na rezultate optimizacije;

• ne moremo nedvoumno potrditi, da z večanjem popu-
lacije dosegamo bolǰse rezultate;

• je za vsako testno funkcijo potrebno eksperimentalno
določiti optimalno nastavitev populacije, saj glede na
rezultate ne moremo potrditi, da obstaja optimalna
nastavitev za vse funkcije;

• je algoritem BA pri optimizaciji funkcij vǐsjih dimen-
zij dosegel zelo slabe rezultate, kar so potrdile tudi že
druge študije [5];

Tabela 5: Rezultati Ridge
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
7,5E2 6,5E6 4,1E6 4,3E6 1,5E6

HBA 3E-07 0,002 0,0002 4E-05 4E-04
BA D=10,

Np=30
1E6 7,5E6 4,1E6 4E6 1,6E6

HBA 2E-06 0,004 0,0003 3E-05 9E-04
BA D=10,

Np=50
1,2E6 8.9E6 4,1E6 3,5E6 2E6

HBA 3E-06 2E-04 4E-05 2E-05 5E-05
BA D=20,

Np=20
1,9E6 2,5E7 1,4E7 1,4E7 6,6E6

HBA 0,0085 4,181 0,397 0,105 0,862
BA D=20,

Np=30
5,2E6 2,9E7 1,7E7 1,7E7 6E6

HBA 0,0082 2,566 0,302 0,071 0,549
BA D=20,

Np=50
5,8E6 2,4E7 1,5E7 1,5E7 4,7E6

HBA 0,009 1,668 0,283 0,129 0,423
BA D=30,

Np=20
1,1E7 7,9E7 3,4E7 3,2E7 1,6E7

HBA 0,464 2,1E6 90,873 5,618 409,032
BA D=30,

Np=30
9,5E6 6,6E7 3E7 2,8E7 1,3E7

HBA 0,253 67,270 10,771 8,240 12,940
BA D=30,

Np=50
8,9E6 4,9E7 2,8E7 2,6E7 1,1E7

HBA 0,414 31,860 9,629 4,938 8,573

Tabela 6: Rezultati Rosenbrock
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
1,9E8 4E7 1E7 7E6 1E7

HBA 6E-05 100,789 7,077 2,633 19,636
BA D=10,

Np=30
5E8 2E7 1E7 9E6 6E6

HBA 0,0065 7,903 3,641 3,430 2,340
BA D=10,

Np=50
2E6 3E7 1E7 8E6 7E6

HBA 0,0133 65,412 5,365 2,524 12,642
BA D=20,

Np=20
2E7 1E8 5E7 5E7 2E7

HBA 1,248 121,418 21,271 12,315 27,305
BA D=20,

Np=30
6E6 6E7 3E7 3E7 2E7

HBA 0,495 78,608 12,600 10,839 14,593
BA D=20,

Np=50
3E6 7E7 4E7 4E7 2E7

HBA 1,874 69,171 13,313 11,927 12,300
BA D=30,

Np=20
1E7 2E8 6E7 6E7 4E7

HBA 4,326 567,123 61,398 22,023 109,953
BA D=30,

Np=30
2E7 2E8 7E7 6E7 4E7

HBA 0,033 106,160 32,547 21,400 30,564
BA D=30,

Np=50
2E7 2E8 8E7 7E7 5E7

HBA 9,143 74,178 29,963 24,145 20,055

• se je algoritem HBA izkazal kot zelo učinkovit pri vseh
nastavitvah parametrov. Najbolǰse rezultate je dosegel
pri dimenzijah 10 in 20, pri nekaterih funkcijah pa tudi
pri dimenziji 30;

• so bile pri funkcijah Rosenbrock, Sphere in Whitley
razlike v rezultatih optimizacije največje, pri funkcijah
Ackley (slika 1) in Rastrigin pa najmanǰse;

Na podlagi dobljenih rezultatov in njihove analize lahko od-
govorimo na zastavljeni raziskovalni vprašanji. Z večanjem
populacije pri nekaterih testnih funkcijah dosežemo bolǰse
rezultate, vendar pa to ne velja za vse primere. S tem smo
odgovorili na RV1.

HBA dosega bolǰse rezultate na testnih funkcijah vǐsjih di-
menzij kakor njegov predhodnik BA. Razlog za to leži v hi-
bridizaciji s strategijami DE, saj se osnovna različica algo-

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

88



Tabela 7: Rezultati Salomon
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
507E3 1054E3 828E3 800E3 158E3

HBA 0,099 3,582 0,891 0,895 0,759
BA D=10,

Np=30
258E3 1603E3 954E3 948E3 353E3

HBA 0,099 1,592 0,621 0,398 0,344
BA D=10,

Np=50
474E3 1390E3 870E3 871E3 247E3

HBA 0,099 2,487 0,605 0,398 0,481
BA D=20,

Np=20
1207E3 3342E3 2153E3 2009E3 566E3

HBA 0,895 14,326 4,740 3,582 3,006
BA D=20,

Np=30
901E3 3124E3 2260E3 2312E3 631E3

HBA 0,895 12,038 4,000 2,487 3,171
BA D=20,

Np=50
1370E3 3732E3 2225E3 2137E3 641E3

HBA 0,895 9,949 4,115 3,582 2,906
BA D=30,

Np=20
1950E3 5542E3 3,4E6 336E4 1E6

HBA 4,875 39,790 10,912 8,059 7,293
BA D=30,

Np=30
265E4 666E4 396E4 386E4 970E3

HBA 2,487 39,791 13,733 9,949 8,835
BA D=30,

Np=50
2,2E6 6E6 3,9E6 3,8E6 1E6

HBA 3,582 35,911 12,070 9,949 8,059

Tabela 8: Rezultati Schwefel
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
1559E3 3213E3 2644E3 2707E3 354E3

HBA 385E3 2024E3 1246E3 1308E3 481E3
BA D=10,

Np=30
2041E3 3101E3 2723E3 2757E3 249E3

HBA 355E3 2026E3 1139E3 1108E3 408E3
BA D=10,

Np=50
2232E3 3223E3 2685E3 2697E3 270E3

HBA 355E3 1906E3 1087E3 952E3 450E3
BA D=20,

Np=20
5414E3 6850E3 6164E3 6265E3 415E3

HBA 2195E3 3852E3 2752E3 2696E3 424E3
BA D=20,

Np=30
5379E3 6607E3 6195E3 6233E3 298E3

HBA 1782E3 3990E3 2893E3 2926E3 502E3
BA D=20,

Np=50
4477E3 6860E3 6088E3 6130E3 490E3

HBA 1682E3 4051E3 2654E3 2645E3 541E3
BA D=30,

Np=20
8983E3 1059E4 9778E3 9805E3 350E3

HBA 2338E3 6235E3 4483E3 4448E3 839E3
BA D=30,

Np=30
9025E3 1084E4 9997E3 10003E3 365E3

HBA 3759E3 6319E3 4655E3 4602E3 732E3
BA D=30,

Np=50
8424E3 1051E4 9790E3 9780E3 528E3

HBA 2694E3 5577E3 4455E3 4379E3 718E3

ritma hitro ujame v lokalni optimum. S tem smo odgovorili
na RV2.

5. ZAKLJUČEK
V prispevku smo predstavili algoritem BA. Natančneje smo
preučili eno izmed njegovih prvih različic, poimenovano HBA.
V sklopu eksperimenta smo oba algoritma uporabili za opti-
mizacijo desetih različnih testnih funkcij. Eksperimente smo
zaganjali na različnih konfiguracijah, pri čemer smo spremi-
njali dimenzije problemov in velikost populacije. Ugotovili
smo, da se je hibridna različica BA izkazala za uspešneǰso
na vseh konfiguracijah nad vsemi testnimi funkcijami.

Za prihodnje delo bomo uporabili hibridno različico algo-
ritma po vzoru obnašanja netopirjev v okviru realnih apli-
kacij, kot je na primer sestavljanje urnikov. Zanimiva bi
bila tudi primerjava dobljenih rezultatov z rezultati drugih
algoritmov, ki jih podpira knjižnica NiaPy.

Tabela 9: Rezultati Sphere
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
1,729 23,752 9,256 8,718 5,678

HBA 8E-15 6E-12 6E-13 1E-13 1E-12
BA D=10,

Np=30
2,417 18,624 9,533 10,048 4,455

HBA 1E-14 6E-12 8E-13 2E-13 1E-12
BA D=10,

Np=50
1,120 23,656 9,089 8,915 5,111

HBA 9E-15 4E-12 7E-13 2E-13 1E-12
BA D=20,

Np=20
6,318 34,822 21,238 19,588 7,618

HBA 2E-16 9E-14 2E-14 6E-15 3E-14
BA D=20,

Np=30
5,700 46,084 18,393 17,703 9,185

HBA 5E-17 2E-13 5E-14 2E-14 6E-14
BA D=20,

Np=50
8,663 42,936 23,238 20,392 10,005

HBA 1E-16 1E-12 1E-13 2E-14 3E-13
BA D=30,

Np=20
10,235 51,285 23,936 22,397 10,715

HBA 2E-14 7E-12 1E-12 5E-13 2E-12
BA D=30,

Np=30
5,173 52,861 22,680 23,952 10,070

HBA 1E-14 2E-11 2E-12 2E-13 4E-12
BA D=30,

Np=50
3,689 52,914 22,079 21,339 9,386

HBA 3E-15 2E-11 2E-12 2E-13 5E-12

Tabela 10: Rezultati Whitley
Alg. Nast. Min Max Mean Median Std
BA D=10,

Np=20
2,8E8 1E8 1E7 2E6 2E7

HBA 11E3 73E3 44E3 43E3 15E3
BA D=10,

Np=30
6,4E7 6E7 1E7 7E6 2E7

HBA 19E3 62E3 44E3 46E3 11E3
BA D=10,

Np=50
1,3E7 4E7 7E6 4E6 1E7

HBA 9E3 59E3 41E3 44E3 12E3
BA D=20,

Np=20
3,8E8 1E9 1E8 5E7 2E8

HBA 71E3 328E3 249E3 250E3 51E3
BA D=20,

Np=30
3,9E8 5E8 9E7 6E7 1E8

HBA 150E3 327E3 248E3 258E3 43E3
BA D=20,

Np=50
4,8E8 4E8 8E7 5E7 9E7

HBA 124E3 343E3 240E3 248E3 52E3
BA D=30,

Np=20
3E6 2E9 3E8 2E8 3E8

HBA 451E3 784E3 656E3 667E3 78E3
BA D=30,

Np=30
9E6 9E8 3E8 3E8 2E8

HBA 408E3 855E3 663E3 663E3 98E3
BA D=30,

Np=50
8E6 6E8 2E8 2E8 1E8

HBA 334E3 851E3 659E3 639E3 117E3

ZAHVALA
Raziskovalni program št. P2-0057 je sofinancirala Javna
agencija za raziskovalno dejavnost Republike Slovenije iz dr-
žavnega proračuna.

LITERATURA
[1] E. Bonabeau, D. d. R. D. F. Marco, M. Dorigo,

G. Theraulaz, et al. Swarm intelligence: from natural
to artificial systems. Number 1. Oxford university
press, 1999.

[2] L. Brezočnik. Optimizacija z rojem delcev za izbiro
atributov pri klasifikaciji. Master’s thesis, University
of Maribor, Slovenia, 2016.

[3] L. Brezočnik, I. Fister, and V. Podgorelec. Swarm
intelligence algorithms for feature selection: a review.
Applied Sciences, 8(9):1521, 2018.

[4] I. Fister Jr. Algoritmi računske inteligence za razvoj

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

89



Slika 1: Primerjava optimizacije testne funkcije Ackley glede na D in Np.

umetnega športnega trenerja. PhD thesis, University of
Maribor, Slovenia, 2017.

[5] I. Fister Jr., D. Fister, and X.-S. Yang. A hybrid bat
algorithm. Elektrotehnǐski vestnik, 80(1-2):1–7, 2013.

[6] Ž. Grajfoner. Primerjava različnih algoritmov po
vzoru obnašanja netopirjev. University of Maribor,
Slovenia, 2019.

[7] D. Karaboga. An idea based on honey bee swarm for
numerical optimization. Technical report, TR06,
Department of Computer Engineering, Engineering
Faculty, Erciyes University, 2005.

[8] K. Ljubič and I. Fister Jr. Narava kot navdih
računalnǐstvu. Življ. teh., 65(15):14–17, 2014.

[9] K. Ljubič and I. Fister Jr. Algoritem na osnovi
obnašanja netopirjev. Presek, 42(3):26–28, 2015.

[10] S. Mirjalili, S. M. Mirjalili, and X.-S. Yang. Binary
bat algorithm. Neural Computing and Applications,
25(3-4):663–681, 2014.

[11] J.-S. Pan, T.-K. Dao, M.-Y. Kuo, M.-F. Horng, et al.
Hybrid bat algorithm with artificial bee colony. In
Intelligent Data analysis and its Applications, Volume
II, pages 45–55. Springer, 2014.

[12] A. K. Qin, V. L. Huang, and P. N. Suganthan.
Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE
transactions on Evolutionary Computation,
13(2):398–417, 2008.

[13] T. Sureshkumar, M. Lingaraj, B. Anand, and
T. Premkumar. Hybrid firefly bat algorithm
(hfba)–based network security policy enforcement for
psa. International Journal of Communication Systems,
31(14):e3740, 2018.

[14] G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister, and
I. Fister Jr. Niapy: Python microframework for
building nature-inspired algorithms. J. Open Source
Softw., 3:613, 2018.

[15] G. Wang and L. Guo. A novel hybrid bat algorithm
with harmony search for global numerical

optimization. Journal of Applied Mathematics, 2013,
2013.

[16] X.-S. Yang. A new metaheuristic bat-inspired
algorithm. In Nature inspired cooperative strategies for
optimization (NICSO 2010), pages 65–74. Springer,
2010.

[17] X.-S. Yang and M. Karamanoglu. Swarm intelligence
and bio-inspired computation: An overview. In X.-S.
Yang, Z. Cui, R. Xiao, A. H. Gandomi, and
M. Karamanoglu, editors, Swarm Intelligence and
Bio-Inspired Computation, pages 3 – 23. Elsevier,
Oxford, 2013.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

90



Nadgradnja algoritma FLORS za besednovrstno
označevanje slovenskih besedil

Domen Kavran
Univerza v Mariboru, Fakulteta

za elektrotehniko,
računalništvo in informatiko

Koroška cesta 46,
2000 Maribor, Slovenija

domen.kavran@student.um.si

Robi Novak
Univerza v Mariboru, Fakulteta

za elektrotehniko,
računalništvo in informatiko

Koroška cesta 46,
2000 Maribor, Slovenija

robi.novak1@student.um.si

Jan Banko
Univerza v Mariboru, Fakulteta

za elektrotehniko,
računalništvo in informatiko

Koroška cesta 46,
2000 Maribor, Slovenija

jan.banko@student.um.si

Rok Potočnik
Univerza v Mariboru, Fakulteta

za elektrotehniko,
računalništvo in informatiko

Koroška cesta 46,
2000 Maribor, Slovenija

rok.potocnik4@student.um.si

Luka Pečnik
Univerza v Mariboru, Fakulteta

za elektrotehniko,
računalništvo in informatiko

Koroška cesta 46,
2000 Maribor, Slovenija

luka.pecnik@student.um.si

Borko Bošković
Univerza v Mariboru, Fakulteta

za elektrotehniko,
računalništvo in informatiko

Koroška cesta 46,
2000 Maribor, Slovenija
borko.boskovic@um.si

POVZETEK
Besednovrstno označevanje je postopek razpoznavanja be-
sednih vrst v besedilu. Algoritem FLORS učinkovito iz-
vaja besednovrstno označevanje z lokalnim kontekstom po-
samezne besede. V članku smo algoritem FLORS nadgradili
za besednovrstno označevanje slovenskega jezika. Izbolǰsavo
smo dosegli z odstranitvijo morfoloških značilk, vezanih na
angleški jezik. Uporabili smo tudi analizo poglavitnih kom-
ponent. Z opisano spremembo nabora značilk smo dosegli
uspešnost 85,16 %. Ugotavljamo, da se algoritem lahko upo-
rabi za označevanje slovenskega jezika.

Ključne besede
besednovrstno označevanje, klasifikacija, procesiranje narav-
nega jezika, jezikovne tehnologije

1. UVOD
Pri opazovanju samostojnih besed v besedilu naletimo na
pojav večpomenskosti, katero lahko zmanǰsamo s povezo-
vanjem individualne besede v lokalni kontekst s sosednjimi
besedami. Besednovrstno označevanje je postopek, katerega
cilj je določitev besedne vrste besedi na podlagi konteksta, ki
ga predstavljajo sosednje besede oz. značilke teh besed. Be-
sednovrstni označevalnik je torej sistem, ki samodejno izvaja
besednovrstno označevanje. Za praktično uporabo mora biti
robusten, učinkovit, natančen in prenosljiv [8].

Poznamo dve vrsti besednovrstnih označevalnikov, in sicer
označevalnike na osnovi pravil (angl. rule-based taggers) ter
stohastične označevalnike (angl. stochastic taggers). Sle-
dnji dosegajo visoko stopnjo točnosti brez sintaktične ana-
lize vhodnega besedila in se odločajo predvsem na podlagi
verjetnosti s pomočjo statističnih tabel, v katerih je znanje
o besedah predstavljeno posredno, medtem ko označevalniki
na osnovi pravil uporabljajo množico definiranih pravil, s
pomočjo katerih določijo besedno vrsto posamezne besede.
S temi pravili je znanje o besedah zapisano neposredno [10,
5, 4].

V [16] je opisan algoritem FLORS (angl. Fast, LOcal, Ro-
bust, Simple). Gre za besednovrstni označevalnik, ki zgradi
kontekst in znanje o besedi, odvisno od njenega lokalnega
okolja, namesto da bi iskal optimalno zaporedje besednih
vrst za celotne stavke. Kontekst besede je sestavljen iz
binarnih in numeričnih značilk, ki so skupaj z delovanjem
samega algoritma podrobneje predstavljene v drugem po-
glavju.

Uspešnost algoritma FLORS nad slovenskim jezikom smo
skušali izbolǰsati z novimi značilkami. V drugem poglavju
predstavimo sorodna dela, po katerih smo se zgledovali, v
tretjem poglavju pa opǐsemo lastno idejo in komponente,
ki smo jih potrebovali za izvedbo samega eksperimenta. V
zadnjem poglavju rekonstruiramo rezultate originalnega al-
goritma nad izbranim slovenskim korpusom in jih nato pri-
merjamo z rezultati nadgrajene različice algoritma.

2. FLORS IN SORODNA DELA
Pristopi k označevanju besed s strojnim učenjem uporabljajo
različne metode učenja. V [7] pristopajo z nevronskimi mre-
žami in dosežejo visoko točnost, vendar pa sta tako izračun
značilk kot tudi učenje mreže časovno zelo zahtevna procesa.
V drugih delih so uporabili preprosteǰse značilke in nekatere
druge metode strojnega učenja.

Uporaba strojnega učenja po metodi s podpornimi vektorji
(angl. Support Vector Machine, SVM ) za besednovrstno
označevanje je bila objavljena v [20]. Z omejitvijo na lokalni
kontekst so avtorji dosegli hitro učenje in izvajanje modela.
Na zbirki besedil Wall Street Journal (WSJ ) so dosegli toč-
nost označevanja 97,16 %. Težave so se pojavile ob aplikaciji
za drugo domeno. To problematiko so reševala kasneǰsa dela.

V [6] so avtorji predstavili nov način za povečanje robustno-
sti besednovrstnega označevanja. Metoda deluje na podlagi
dveh ločenih modelov (splošnega in domensko specifičnega),
naučenih na istih podatkih, a z različnimi značilkami. Za
učenje splošnega modela so uporabili n-grame, ki so se v be-

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

91DOI: https://doi.org/10.26493/978-961-7055-82-5.91-99



sedilu pojavili vsaj trikrat, za učenje domensko specifičnega
modela pa n-grame, ki so se pojavili najmanj enkrat. Pri de-
kodiranju se uporabita oba modela tako, da se izbrani model
spreminja dinamično glede na trenutno vhodno poved. Pri
tem je izbira modela odvisna od podobnosti vhodne povedi
podatkom, ki so jih uporabili za učenje algoritma. Takšen
pristop dinamične izbire modela se nato uporabi v kombina-
ciji z algoritmom besednovrstnega označevanja, ki deluje v
enem prehodu od leve proti desni. Algoritem je bil naučen
na zbirki Wall Street Journal (WSJ), za testiranje delovanja
algoritma pa so avtorji uporabili korpuse iz sedmih različnih
domen. Ob testiranju so dosegli povprečno točnost besedno-
vrstnega označevanja 70,54 % [6].

Algoritem FLORS [16] se loti domenske adaptacije na dru-
gačen način. Uči se na označenih podatkih izvorne domene,
hkrati pa uporabi nekaj statističnih podatkov neoznačenega
besedila iz ciljne domene. Algoritem deluje hitro, saj za
učenje in izvajanje uporablja le omejeno okolico posamezne
besede (v nadaljevanju: kontekst) in preproste značilke; sta-
tistični podatki iz neoznačenega besedila pa zahtevajo zgolj
preštevanje pojavitev. Avtorji definirajo štiri skupine zna-
čilk (slika 1), ki jih je možno ovrednotiti z uporabo zgolj
trenutne besede in vnaprej pripravljene statistike.

Prva skupina značilk se nanaša na bigrame in njihove pojavi-
tve v učnem korpusu. Bigram predstavimo tako, da trenutni
besedi določimo za predhodnika eno od 500 najpogosteǰsih
besed v korpusu. Število pojavitev posameznega bigrama lo-
garitmično obtežimo in tako tvorimo 500 značilk. Vse manj
pogoste besede obravnavamo kot identične in na enak na-
čin tvorimo še eno dodatno značilko, s čimer se izognemo
ničelnemu vektorju.

Podobno tvorimo drugo skupino značilk, le da tokrat trenu-
tni besedi namesto predhodnika pripenjamo naslednika, kot
vidimo na sliki 1(b). Značilke na osnovi pogostih sosedov
doprinesejo koristno informacijo o besednih vrstah [17, 18].

Tretja skupina značilk je množica binarnih značilk za uje-
manje pripone s priponami besed v neoznačenem besedilu.
Drugače, kot je to storjeno v sorodnih delih [19, 14], FLORS
uporabi vse pripone vseh besed. Tako se izognemo potrebi
po izbiranju podmnožice pripon.

Nazadnje dodajo še značilke za 16 posebej izbranih lastnosti
besede, kot so vsebovanje števk, vezajev in velikih začetnic,
pa tudi ujemanje s pogostimi končnicami angleškega jezika.

Predstavljen postopek določi približno 100.000 značilk na
besedo. Največji delež značilk sestavljajo značilke tretje sku-
pine. Na sliki 2 je prikazano, kako iz značilk besed sestavimo
vektor značilk konteksta. Značilke konteksta uporabimo za
nadzorovano učenje klasifikacijskega modela. Avtorji upo-
rabijo okno dolžine petih besed, torej učimo s 500.000 vho-
dnimi diskretnimi atributi. Model klasificira besede v ra-
zrede glede na njihovo slovnično besedno vrsto. Podobno
kot v [20] in [6] tudi pri FLORS učimo po metodi SVM s
pristopom One-Vs-All.

Na izvorni domeni so avtorji dosegli točnost 96,59 %, pri
adaptaciji na različne ciljne domene pa med 89,44 % in 94,71
%.

Slika 1: Vektor značilk posamezne besede po algo-
ritmu FLORS na primeru besede “FLORS”. a) prva
in b) druga skupina značilk so frekvence bigramov,
ki jih sestavimo s trenutno besedo in pogostimi be-
sedami učnega korpusa. Dodamo c) binarne značilke
za ujemanje pripone in d) nekaj dodatnih značilk za
posebne lastnosti besede.

Slika 2: Vektor značilk konteksta po algoritmu
FLORS dobimo tako, da združimo vektorje značilk
besed v lokalnem oknu. Prikazan je primer zapo-
redja besed “Značilke algoritma FLORS ovredno-
timo na”.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

92



V našem delu prilagodimo algoritem FLORS za klasifikacijo
besednih vrst v slovenskem jeziku, kar opǐsemo v naslednjem
poglavju.

3. ALGORITEM
Nadgradnjo algoritma FLORS smo izvedli z dodatnimi zna-
čilkami, izbranimi za točneǰse označevanje besednih vrst v
slovenskem jeziku. Posebno pozornost smo namenili šumni-
kom in besednim priponam, ki so pogosto uporabljene v slo-
venskem jeziku, v angleščini pa niso prisotne.

Na podlagi analize besednih vrst in njihovih značilnosti v
slovenščini smo izpeljali množico predpon in pripon, ki jih
predstavimo v naslednjem podpoglavju.

Naša hipoteza je bila, da se bo z izpeljanimi značilkami toč-
nost besednovrstnega označevanja nad slovenskimi besedili
izbolǰsala.

3.1 Značilke
Obstoječim značilkam algoritma FLORS smo dodali binarne
značilke, ki jih lahko razvrstimo v naslednje skupine:

• predponi u in v. Predponi se lahko umestita na za-
četek različnih besednih vrst. Med glagoli lahko naj-
demo naslednje primere uporabe omenjenih predpon:
u-krasti, u-pasti, v-plačati, v-pisati.

• Predpone sestavljenk. Predponi od- in na- se lahko
uporabita na začetku sestavljenke (npr. od-dati, od-
zgoraj, na-pisati, na-govoriti).

• Pripone izpeljank. Pripone -lec, -ec, -arna se lahko
uporabijo kot končine sestavljenk (npr. bra-lec, pis-
ec, knjig-arna). Pri izpeljavi del dvodelne podstave
zamenjamo s priponskim obrazilom.

• Končnice pridevnikov in pridevnǐskih zaimkov.
Končnica -ra se pojavi pri pridevnikih (npr. dob-ra),
končnica -ja pa se lahko pojavi pri pridevnǐskih zaim-
kih (npr. mo-ja, tvo-ja).

• Sprememba pri soglasnǐskih premenih. Za be-
sede s končnico -ci se črka k v velelniku spremeni v
črko c (npr. tekel – teci), kar imenujemo mehčanje
ali palatizacija. Za besede s končnico -zi se črka g v
velelniku spremeni v črko z (npr. vrgel – vrzi).

• Končnice samostalnǐskih besed. Pri besedah žen-
skega spola ima samostalnǐska beseda končnico -a, pri
srednjem spolu pa -o. Naslednji primeri so posamosta-
ljene pridevnǐske besede: dobra, tista, dobro, tisto.

• Končnice vrstnih pridevnikov. Z končnicama -
ski in -ški lahko razpoznamo vrstne pridevnike (npr.
fotograf-ski, potaplja-̌ski).

• Obrazilo v kombinaciji s podstavo. Pri besedo-
tvorju se lahko končnici -ica in -ost pojavita kot obra-
zilo, skupaj s podstavo pa tvorita novo besedo. Upo-
rabili smo desna obrazila (npr. miz-ica, mlad-ost).

• Pripone besedotvorne vrste sklop. Končnice -to,
-tem, -deset se lahko pojavijo kot pripone pri besedo-
tvorni vrsti sklop, ki nastane s sklaplanjem, kjer posa-
mezne dele večdelne podstave združimo v novo besedo
(npr. na-to, po-tem, dva-in-tri-deset).

• Naglasna, naslonska ali navezna sklonska oblika.
Končnice -ga, -ne, -me se pojavijo kot pripone nagla-
snih, naslonskih ali naveznih sklonskih oblik osebnega
zaimka (npr. nje-ga, me-ne, na-me).

• Pripone kazalnih zaimkov. Priponi -ta in -ti se
pojavita pri kazalnih zaimkih (npr. ta, tis-ti).

• Pripone vprašalnih zaimkov. Končnice -aj, -em,
-im, -en in -od se pojavijo v vprašalnih zaimkih (npr.
k-aj, kater-em, kater-im, kakš-en, k-od).

• Šumniki Posebnost slovenskega jezika so šumniki č, š
in ž.

Binarne značilke predstavljajo prisotnost predpon, pripon in
šumnikov. Opisane značilke zajemajo morfološke značilno-
sti slovenskega jezika in jih uvrščamo med oblikovne (angl.
shape) značilke algoritma FLORS. Obdržali smo ortografski
del značilk (ali beseda vsebuje števko, poševnico, veliko za-
četnico). Izpostaviti moramo dejstvo, da se zaradi komple-
ksnosti gramatike slovenskega jezika nekatere značilke po-
javijo tudi pri vrstah besed, za katere niso bile v osnovi
zasnovane.

3.2 Analiza poglavitnih komponent
Osrednji namen analize poglavitnih komponent (angl. Prin-
cipal Component Analysis, PCA) je zmanǰsanje števila di-
menzij množice podatkov, ki jih sestavlja veliko število ko-
reliranih spremenljivk, ne da bi pri tem okrnili izraznost
podatkov. Učinek je dosežen s pomočjo transformacije spre-
menljivk v novo množico, ki jo imenujemo množica pogla-
vitnih komponent (angl. principal components). Poglavitne
komponente med seboj niso odvisne, ohranjajo pa kar najve-
čjo stopnjo raznolikosti podatkov, ki je prisotna v originalnih
spremenljivkah, s čimer zagotovijo, da je z njihovo pomo-
čjo podatke med seboj možno ustrezno razlikovati. Tako
za ceno nekaj točnosti dobimo enostavneǰso predstavitev, s
čimer poenostavimo analizo in obdelavo podatkov [12].

Naj bo x vektor p naključnih spremenljivk. V procesu do-
ločanja poglavitnih komponent nas zanimajo raznolikosti in
korelacije med spremenljivkami. Če vrednost p ni majhna,
ni smiselno pregledovati vseh možnih povezav med spremen-
ljivkami x, zato se raje osredotočimo na nekaj (�p) izpelja-
nih spremenljivk, ki vsebujejo kar največ informacij v zvezi
z raznolikostjo, korelacijo in kovarianco med originalnimi
spremenljivkami. PCA izpelje spremenljivke, odvisno od
tipa podatkov, na podlagi kovariančne ali korelacijske ma-
trike, ki opisujeta, na kakšen način so izvorne spremenljivke
med seboj povezane. Gre za simetrični matriki, velikosti
p × p. Izpeljane spremenljivke so linearne kombinacije iz-
vornih spremenljivk in so med seboj nekorelirane, torej gre
za ortogonalne vektorje, ki predstavljajo smeri, v katerih se
kaže največja raznolikost podatkov. Te kombinacije oz. po-
glavitne komponente so izpeljane in urejene na način, da se

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

93



Slika 3: Graf originalnih podatkov za spremenljivki
x1 in x2 z označenima poglavitnima komponentama.
Vir: [12]

v začetnih komponentah nahaja čim več, v kasneǰsih kompo-
nentah pa vedno manj informacij. Med p izpeljanimi spre-
menljivkami je cilj izbrati nekaj prvih (�p), ki vsebujejo
največ informacij in s tem ohraniti izraznost podatkov kljub
zmanǰsanju števila dimenzij [12].

Za enostaven, sicer nerealen, prikaz delovanja PCA privza-
memo, da je p = 2. Na ta način lahko prikažemo podatke
v dveh dimenzijah. Slika 3 prikazuje primer grafa za dve
spremenljivki x1 in x2, ki sta v korelaciji. Spremenljivost
je prisotna tako v smeri x1 kot tudi v smeri x2, če pa vse
skupaj pretvorimo v domeno poglavitnih komponent, do-
bimo spremenljivki z1 in z2 ter s tem graf, ki ga prikazuje
slika 4 [12]. Iz slike 4 je vidno, da so spremembe v smeri
z1 velike, medtem ko je variacija v smeri z2 majhna. Če
so spremenljivke med seboj močno korelirane, bo prvih ne-
kaj poglavitnih komponent odraz večine variacij originalnih
spremenljivk, medtem ko bodo naslednje poglavitne kom-
ponente predstavljale smeri, kjer ni veliko raznolikosti. Z
drugimi besedami, prve poglavitne komponente vsebujejo
večino informacij [12].

Primeri apliciranja PCA na razna področja so:

• identifikacija pomembnih virov raznolikosti pri ana-
tomskih meritvah različnih življenjskih vrst;

• analiza demografskih informacij, pridobljenih s pomo-
čjo anketiranja stareǰsega prebivalstva Združenega kra-
ljestva;

• pregled prostorskih in časovnih sprememb v atmosfer-
skih znanostih;

• določanje pomembnih povezav med lastnostmi kemij-
skih spojin;

Slika 4: Graf glede na spremenljivki z1 in z2 z ozna-
čenima poglavitnima komponentama v prostoru po-
glavitnih komponent. Vir: [12]

• analiza borznih cen [12].

3.3 Uporabljeni klasifikatorji
Za klasificiranje besednih vrst smo uporabili tri različne kla-
sifikatorje, in sicer One-vs-All SVM z linearnim jedrom, Na-
ivni Bayes ter Random Forest. Posameznim parametrom pri
vsakem izmed uporabljenih klasifikatorjev se nismo posebej
posvečali, pri testiranju pa smo uporabili petkratno navzkri-
žno preverjanje. V tem podpoglavju bomo na kratko opisali
vsakega izmed uporabljenih klasifikatorjev.

3.3.1 One-vs-All SVM
SVM je metoda strojnega učenja z uporabo nadzorovanega
učenja, ki jo lahko uporabimo tako za klasifikacijo kot regre-
sijo. Pri tej metodi vsak primerek iz učne množice predsta-
vimo kot točko v n-dimenzionalnem prostoru, pri čemer n
predstavlja število značilk primerka. Algoritem nato najde
optimalno hiperravnino, ki najbolje razdeli dva razreda.

Naloga metode SVM je najti optimalno hiperravnino izmed
vseh, ki ločujejo primerke na dva razreda, pri čemer primerki
enega razreda ležijo pod, primerki drugega razreda pa nad
hiperravnino. Primerki, ki ležijo nad hiperravnino, so pozi-
tivni, primerki pod hiperravnino pa negativni. Najprej poi-
ščemo v vsakem razredu primerek, ki leži najbližje delilni hi-
perravnini. Izbranim primerkom pravimo podporni vektorji
(angl. support vectors). Skozi njiju potegnemo vzporednici,
ki jima pravimo pozitivna in negativna ravnina. Razdaljo
med tema dvema ravninama imenujemo rob (angl. margin).
Optimalna delilna ravnina je tista, pri kateri je velikost roba
maksimalna. Razred, kateremu pripada posamezen prime-
rek, določimo glede na to, na kateri strani delilne ravnine
se nahaja. Na sliki 5 lahko vidimo delilno, pozitivno ter
negativno hiperravnino [13].

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

94



Slika 5: Prikaz hiperravnin pri metodi SVM.

Slika 6: Prikaz večrazredne klasifikacije SVM z me-
todo One-vs-All.

Če želimo SVM uporabiti za klasifikacijo v več razredov,
moramo uporabiti eno izmed metod za večrazredno klasifika-
cijo. V naši implementaciji algoritma FLORS smo uporabili
metodo One-vs-All. Metoda za vsak razred ustvari binarni
klasifikator SVM. Vsak i-ti klasifikator razdeli primerke na
tiste, ki spadajo v i-ti razred in tiste, ki ne. Primer večra-
zredne klasifikacije SVM z metodo One-vs-All je prikazan na
sliki 6 [1].

3.3.2 Naivni Bayes
Klasifikator Naivni Bayes je del družine enostavnih verje-
tnostnih klasifikatorjev, ki temeljijo na uporabi Bayesovega
pravila. Njegova uporaba je popularna predvsem na podro-
čju klasifikacije besedila ter zaznavanja neželjene pošte.

P (A|B) =
P (B|A)P (A)

P (B)
(1)

S pomočjo Bayesovega pravila, zapisanega v enačbi (1), lahko
poǐsčemo verjetnost, da se zgodi dogodek A v primeru, da
se je zgodil dogodek B.

Pri klasifikaciji s pomočjo Naivnega Bayesa se odločamo o
tem, v kateri razred spada določen primerek glede na vredno-
sti njegovih značilk. Glavna predpostavka, na kateri temelji
ta algoritem je, da so vse značilke posameznega primerka
pogojno neodvisne druga od druge pri danem razredu. Prav
tako predpostavimo, da ima vsaka značilka enak vpliv na
odločitev klasifikatorja. Če dogodek A iz enačbe (1) sedaj
zamenjamo s klasifikacijskim razredom y, ter dogodek B z
vektorjem značilk X, potem lahko Bayesovo pravilo zapǐsemo
z enačbo (2).

P (y|X) =
P (X|y)P (y)

P (X)
(2)

Ker je dogodek X presek več dogodkov oz. značilk, lahko
zapǐsemo enačbo (3).

P (y|x1, x2, ..., xn) =
P (x1|y)P (x2|y)...P (xn|y)P (y)

P (x1)P (x2)...P (x3)
(3)

Vrednost izraza v imenovalcu je enaka za vse primerke v
množici, zato se lahko imenovalca znebimo in uvedemo od-
visnost. Tako dobimo enačbo (4).

P (y|x1, x2, ..., xn) ∝ P (y)

n∏
i=1

P (xi|y) (4)

Primerek uvrstimo v razred y, dobljen z enačbo (5), ki vrne
razred z najvǐsjo verjetnostjo [11, 3].

y = argmaxyP (y)

n∏
i=1

P (xi|y) (5)

3.3.3 Random Forest
Klasifikator Random Forest je metoda nadzorovanega stroj-
nega učenja. Spada v t.i. ansambelske metode, katerih zna-
čilnost je, da združujejo več klasifikatorjev enakih ali različ-
nih vrst v en skupen klasifikator. Ideja ansambelskih metod
je, da več slabših klasifikatorjev skupaj deluje bolje kot en
dober klasifikator. Klasifikator Random Forest je sestavljen
iz več različnih odločitvenih dreves, ki jih naučimo na na-
ključni podmnožici primerkov iz učne množice z naključno
izbrano podmnožico značilk. Končno klasifikacijo dobimo
tako, da združimo odločitve posameznih odločitvenih dre-
ves. Generalna shema algoritma je prikazana na sliki 7 [9,
15].

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

95



Slika 7: Shema algoritma Random Forest.

4. REZULTATI
Algoritem smo preizkusili nad korpusom jos100k1. Z iz-
vornim algoritmom FLORS smo nad slovenskim besedilom
dosegli uspešnost 83,05 % po metriki F1. Po odstranitvi
morfoloških značilk, vezanih na angleški jezik, ter izvajanju
analize poglavitnih komponent smo dosegli 85,16 %. Algo-
ritem PCA je vedno izbolǰsal rezultate, saj z zmanǰsanjem
dimenzije iskalnega prostora dosežemo bolǰso generalizacijo
in s tem vǐsjo točnost klasifikacije prej nevidenih podatkov.
Najbolǰse rezultate smo uspeli doseči z algoritmom SVM,
katerega rezultati pri različnem naboru značilk so vidni na
sliki 8. Z dodajanjem značilk, vezanih na pogoste predpone
in končnice v slovenskem jeziku, nam uspešnosti klasifikacije
ni uspelo izbolǰsati.

Klasifikacijo besednih vrst smo izvedli s tremi različnimi kla-
sifikacijskimi algoritmi. Prej omenjeno točnost smo dosegli
z metodo podpornih vektorjev, ki ga uporablja tudi izvorni
algoritem FLORS. Modela Naivni Bayes in Random Forest
sta bila manj uspešna kot SVM. Na slikah 9 in 10 vidimo
klasifikacijske rezultate modelov nad testno množico podat-
kov.

Rezultate najuspešneǰsega modela nad individualnimi be-
sednimi vrstami si ogledamo z matriko napak na sliki 11.
Napake so pogoste pri klasifikaciji razreda ”medmet”in ”ne-
uvrščeno”. Napačno uvrstitev medmetov obrazložimo z dej-
stvom, da medmeti ne upoštevajo slovničnih pravil in se
lahko pojavijo v mnogih oblikah, na primer z različnim šte-
vilom zaporednih pojavitev iste črke. Poleg tega je število
medmetov v učnem korpusu majhno. Razred ”neuvrščeno”je
slabo definiran, saj vsaka beseda pripada določeni besedni
vrsti. Razred ”neuvrščeno”predstavlja zgolj manjkajoče po-
datke v učni množici. Model bo takšno besedo uvrstil v drug
razred, ki je z veliko verjetnostjo celo pravilen.

5. ZAKLJUČEK
V sklopu dela smo implementirali algoritem besedovrstnega
označevanja FLORS [16] in na različne načine skušali izbolj-
šati njegovo delovanje na slovenskem jeziku. FLORS defi-
nira nabor značilk, ki se uporabijo za učenje modela linearni
SVM za označevanje angleškega jezika. Odstranili smo zna-
čilke, vezane izključno na angleščino, s čimer smo dvignili
uspešnost označevanja. Poskusili smo dodati nove značilke
na osnovi morfoloških značilnosti slovenščine, vendar smo
opazili, da je to znižalo točnost rezultatov. Preizkusili smo

1Dostopno na http://nl.ijs.si/jos

učna modela Naivni Bayes in Random Forest, vendar sta se
izkazala kot manj uspešna v primerjavi s SVM. Nazadnje
smo uspeli uspešnost še dodatno povečati z uporabo algo-
ritma za analizo poglavitnih komponent (PCA). Najvǐsja
uspešnost, ki smo jo s tem dosegli, je 85,16 % po metriki
F1.

Na podlagi rezultatov sklepamo, da uspešnost algoritma
FLORS na slovenščini ni primerljiva z uspešnostjo drugih
metod besednovrstnega označevanja [2]. Algoritem FLORS
je preprost in hiter, a s preprostimi značilkami ne uspe zajeti
kompleksnosti slovenskega jezika. Predpona in končnica ne
nudita koristnih informacij o besedni vrsti, ker ima beseda
preveč oblik, v katerih se lahko pojavi. Dodatne značilke, ki
ne pripomorejo k razlikovanju med besednimi vrstami, pov-
zročijo, da se dimenzija iskalnega prostora poveča in uspe-
šnost klasifikacijskega modela zmanǰsa.

Točnost lahko povečamo z izključitvijo tistih obstoječih zna-
čilk, ki so nekoristne za označevanje besednih vrst sloven-
skega jezika. Odstranitev morfoloških značilk angleškega je-
zika je prvi korak k poenostavitvi algoritma in izbolǰsanju
klasifikacijskih rezultatov. Transformacija PCA dodatno
zmanǰsa dimenzijo prostora značilk, kar pri vsakem naboru
značilk poveča točnost klasifikatorja linearni SVM.

V nadaljnjem delu se bomo osredotočili na slovnične opera-
cije, s katerimi bi lažje obvladovali kompleksnost slovenskega
jezika in izpeljali značilke, ki bi povečale točnost besednovr-
stnega označevanja. Smiselno bi bilo uporabiti tudi metode
s področja lematizacije, saj bi z osnovnimi oblikami besed
lažje določili njihove besedne vrste.

6. VIRI
[1] B. Aisen. A comparison of multiclass svm methods,

2006.

[2] P. Belej, M. Robnik-
v Sikonja, and S. Krek. Character-level part-of-speech
tagger of slovene language, 2019. Slovenian language
resource repository CLARIN.SI.

[3] M. Bozhinova. NAIVNI BAYESOV KLASIFIKATOR.
PhD thesis, Univerza v Mariboru, Fakulteta za
elektrotehniko, računalnǐstvo in informatiko, 2015.

[4] E. Brill. A simple rule-based part of speech tagger. In
Proceedings of the Third Conference on Applied
Natural Language Processing, ANLC ’92, pages
152–155, Stroudsburg, PA, USA, 1992. Association for
Computational Linguistics.

[5] E. Brill. Some advances in transformation-based part
of speech tagging. CoRR, abs/cmp-lg/9406010, 1994.

[6] J. Choi and M. Palmer. Fast and robust
part-of-speech tagging using dynamic model selection.
volume 2, pages 363–367, 07 2012.

[7] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language
processing (almost) from scratch. Computing Research
Repository - CORR, 12, 03 2011.

[8] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A
practical part-of-speech tagger. In Proceedings of the
Third Conference on Applied Natural Language
Processing, ANLC ’92, pages 133–140, Stroudsburg,
PA, USA, 1992. Association for Computational

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

96



Slika 8: Urejeni rezultati metrike F1 pri klasifikacijskem modelu SVM za dodane slovenske morfološke zna-
čilke, odstranjene angleške morfološke značilke in apliciranje transformacije PCA.

Slika 9: Rezultati metrike F1 za modele SVM, Naivni Bayes in Random Forest.

Slika 10: Vrednosti metrike F1 klasifikacijskih modelov SVM, učenih z različnimi nabori značilk: dodane
slovenske morfološke značilke, odstranjene angleške morfološke značilke in apliciranje transformacije PCA.

Linearni SVM Naivni Bayes Random Forest
FLORS 83.05 % 40.81 % 65.83 %
FLORS + PCA 83.94 % 13.03 % 34.77 %
FLORS + slov. značilke 81.32 % 42.03 % 57.96 %
FLORS + slov. značilke + PCA 82.19 % 10.49 % 29.64 %
FLORS - ang. značilke + slov. značilke 81.51 % 40.63 % 60.22 %
FLORS - ang. značilke + slov. značilke + PCA 83.24 % 10.83 % 27.81 %
FLORS - ang. značilke 83.79 % 43.16 % 61.05 %
FLORS - ang. značilke + PCA 85.16 % 9.65 % 34.59 %

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

97



Slika 11: Matrika zmot algoritma FLORS po metriki F1 z modelom SVM z odstranjenimi angleškimi morfo-
loškimi značilkami in po uporabi PCA. Prikazana je točnost klasifikacije posamezne besedne vrste. Stolpec
predstavlja razred, v katerega smo besedo uvrstili. Vrstica predstavlja dejanski razred besede.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

98



Linguistics.

[9] N. Donges. The random forest algorith, 2018.

[10] P. F. Brown, V. Dellapietra, P. V. de Souza, J. Lai,
and R. Mercer. Class-based n-gram models of natural
language. Computational Linguistics, 18:467–479, 01
1992.

[11] R. Gandhi. Naive bayes classifier, 2018.

[12] I. Jolliffe. Principal Component Analysis, pages
1094–1096. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[13] D. Kumar. Demystifying support vector machines,
2019.

[14] J. Miller, M. Torii, and K. Vijay-Shanker. Building
domain-specific taggers without annotated (domain)
data. pages 1103–1111, 01 2007.

[15] S. Patel. Chapter 5: Random forest classifier, 2017.

[16] T. Schnabel and H. Schütze. Flors: Fast and simple
domain adaptation for part-of-speech tagging.
Transactions of the Association for Computational
Linguistics, 2:15–26, 12 2014.

[17] H. Schütze. Part-of-speech induction from scratch.
pages 251–258, 01 1993.

[18] H. Schütze. Distributional part-of-speech tagging.
page 141, 03 1995.

[19] K. Toutanova, D. Klein, C. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic
dependency network. Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology—NAACL ’03, 1, 03 2004.

[20] J. Us Gim Enez and L. S M Arquez. Svmtool: A
general pos tagger generator based on support vector
machines. 07 2004.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

99





Analiza igralnih strategij v iterativni zaporniški dilemi

Klemen Kac
Laboratorij za heterogene računalniške sisteme

Koroška cesta 46
Maribor, Slovenija

klemen.kac@um.si

Bor Praznik
Laboratorij za heterogene računalniške sisteme

Koroška cesta 46
Maribor, Slovenija

bor.praznik@um.si

POVZETEK
V pričujoči raziskavi smo analizirali igralne strategije v itera-
tivni zapornǐski dilemi. Strateške igre so sestavljene iz mno-
žice igralcev, množice strategij za vsakega igralca in vektorja
izplačil, ki vsaki strategiji priredi določeno vrednost izpla-
čila. Cilj strateške igre je maksimizirati vrednost izplačila za
posameznega igralca. Igralne strategije v članku smo med
seboj primerjali v dveh vrstah turnirjev, kjer se več posame-
znikov pomeri v več tekmah. Pri prvi vrsti turnirja, se vsak
igralec pomeri z vsemi ostalimi, pri drugi pa smo uporabili
turnirsko selekcijo, kjer po vsakem krogu izpade najslabši
igralec. Implementirali smo tudi lastno igralno strategijo,
ki dosega rezultate primerljive z obstoječimi strategijami.
Ugotovili smo, da je učinkovitost posamezne igralne stra-
tegije zelo odvisna od vrste turnirja, s katerim strategijo
ocenjujemo.

Kjučne besede
zapornǐska dilema, turnirska selekcija, igralne strategije

1. UVOD
Strateška igra je urejena trojka G = 〈N,S, u〉, kjer pomenijo:

• N = {1, ..., n} je končna množica igralcev,

• S = {Si} je množica strategij Si, za vsakega izmed
igralcev i = {1, ..., n},

• ui : S −→ R je funkcija koristnosti, ki vsaki množici
strategij S priredi izplačilo za i-tega igralca ui(S).

Cilj teorije strateških iger je svetovati, katero strategijo bodo
nasprotniki igrali z večjo verjetnostjo, oz. priporočiti igral-
cem, katero strategijo igrati, da je izplačilo največje.

V splošnem poznamo tri koncepte strateških iger: dominan-
tnost, stabilnost in maksimalna družbena korist. Glede na
določeno strategijo i-tega igralca obstaja več možnih izidov.

Pravimo, da je strategija Si dominantna za igralca i, če ne
glede na to, katero strategijo Sj igra igralec j, igralec i dobi
več, kot bi dobil, če bi igral katerokoli drugo strategijo. Igra-
nje dominantne strategije zagotavlja agentu najbolǰsi izid.
Najbolj važen koncept v teoriji iger je stabilnost. Dve stra-
tegiji S1 in S2 sta stabilni pod pogojem, da:

• če igralec i odigra strategijo S1, igralec j ne more od-
igrati bolǰse poteze kot S2 in

• če igralec j odigra strategijo S2, igralec i ne more od-
igrati bolǰse poteze kot S1.

Maksimalna družbena korist ne gleda na izplačilo posame-
znega agenta, ampak vseh agentov skupaj.

Analiza igralnih strategij v zapornǐski dilemi je že precej
dobro obdelano področje v teoriji iger. V članku [1] avtorji
ugotovljajo, da dominantne strategije v posameznem krogu
niso nujno dominantne v več krogih. Axelrod v članku [2]
opisuje evolucijsko razvijanje igralnih strategij v iterativni
zapornǐski dilemi. Isti avtor v članku [3] predlaga tudi, kako
učinkovito igrati iterativno zapornǐsko dilemo.

V naši raziskavi smo analizirali že omenjene igralne strategije
v iterativni zapornǐski dilemi in poskušali izmeriti uspešnost
posameznih strategij v določeni vrsti turnirja. Definirali smo
dve vrsti turnirja. Pri prvi vrsti turnirja vsak posameznik
tekmuje z vsemi ostalimi. Zmagovalna strategija je tista,
ki ima skupno najbolǰsi rezultat. Pri drugi vrsti po vsa-
kem krogu izločimo najslabšo strategijo, ostale strategije pa
igrajo še enkrat v naslednjem krogu. V takšnem turnirju
je zmagovalna strategija tista, ki ne izgubi z nobeno izmed
preostalih strategij v turnirju.

Struktura članka v nadaljevanju je naslednja: v drugem po-
glavju podrobneje predstavimo zapornǐsko dilemo, v tretjem
povzamemo igralne strategije in opǐsemo obe vrsti turnirja,
s katerima smo analizirali uspešnosti strategij ter podrob-
neje opǐsemo lastno igralno strategijo “PRAKAC”, četrto
poglavje je namenjeno predstavitvi poskusov in rezultatov,
v zadnjem poglavju pa povzamemo opravljeno delo ter pred-
stavimo naše ugotovitve.

2. ZAPORNIŠKA DILEMA
Zapornǐska dilema je igra, v kateri nastopata dva igralca,
ki se pretvarjata, da sta zapornika. Zaprta sta vsak v svoji

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

101DOI: https://doi.org/10.26493/978-961-7055-82-5.101-106



ločeni celici. Med seboj se ne smeta pogovarjati. Policija
želi vsaj enega izmed njiju zapreti za dalj časa [4]. Zapor-
nik lahko svoj zločin prizna ali ne. Odločitev posameznega
zapornika se ovrednoti s številom let, ki jih mora preživeti
v zaporu. Cilj obeh zapornikov je, da sta zaprta čim manj
časa.

Analiza izidov klasične zapornǐske dileme pokaže, da je za
zapornika najbolje, če izda sojetnika, saj v primeru, da drugi
zapornik ne prizna sodelovanja v zločinu, prvi “namoči” dru-
gega, ki mora odgovarjati za svoje nesodelovanje s policijo,
in sicer z maksimalno kaznijo, prvi pa bo oproščen vsakršne
krivde. Ta igra v večagentnih sistemih predstavlja dilemo,
saj je v nasprotju s tezo, da je sodelovanje med agenti tista
strategija, ki zagotavlja ključ do uspeha.

Vendar pa se izkaže, da sodelovanje postane zmagovalna
strategija, če igro ponavljamo večkrat. V tem primeru imamo
opravka s t.i. iterativno zapornǐsko dilemo, kjer se zapor-
nika lahko odločata za igranje poljubne strategije. Lahko se
na primer odločita, da bosta vedno izdajala svojega naspro-
tnika ali pa, da bosta vedno sodelovala. Število let zapora se
pri iterativni zapornǐski dilemi skozi kroge sešteva. S pona-
vljanjem igre dosežemo, da postane sodelovanje racionalna
odločitev. Z igranjem strategije sodelovanja vzpodbujamo,
da tudi nasprotnik igra isto, kar postane na dolgi rok najbolj
profitabilna odločitev za oba igralca.

Igralca (A in B), morata spoštovati naslednja pravila [5]:

• Če igralec A izda igralca B, ta pa njega ne, potem gre
igralec B v zapor za 3 leta, igralec A pa je izpuščen.

• Če zločin priznata oba, gresta oba v zapor za 2 leti.

• Če zločina ne prizna nobeden, bosta oba obsojena na
1 leto zapora.

V Tabeli 1 vidimo prikaz razdelitve točk med igralcema A
in B v primeru sodelovanja oziroma izdaje. Opazimo, da
je za oba igralca dominantna strategija izdajanje (nesode-
lovanje), kajti ne glede na nasprotnikovo odločitev, igralec
največ pridobi z izdajanjem. Stabilnost dosežemo, če oba
igralca hkrati izdajata drug drugega. Takrat sta odločitvi
druga drugi najbolǰsi odgovor. Maksimalna družbena korist
je v primeru, ko oba igralca sodelujeta. Takrat je vsota let,
ki jih oba igralca morata preživeti v zaporu najmanǰsa.

Tabela 1: Točkovanje

A
B

Sodelovanje Izdaja

Sodelovanje

A in B dobita po

1 leto zapora (-1 tč.)

A: 3 leta (-3 tč.)

B: izpuščen (0 tč.)

Izdaja

A: izpuščen (0 tč.)

B: 3 leta (-3 tč.)

A in B dobita po

2 leti zapora (-2tč.)

Vsak igralec se mora odločiti, katero igralno strategijo bo
igral. Igralec A lahko sodeluje in pri tem upa, da bo sode-
loval tudi njegov nasprotnik. S tem bi oba igralca dobila po

1 leto zapora. V primeru, da igralec A izda igralca B, je
igralec A izpuščen, igralec B pa dobi 3 leta zapora. Če se
katerikoli izmed igralcev odloči za izdajanje, lahko v najslab-
šem primeru dobi 2 leti zapora. Seveda pa igralec, ki izdaja
upa, da bo nasprotnik sodeloval. Tako bi se sam izognil ka-
zni, nasprotnik pa bi dobil 3 leta zapora. S ponavljanjem
igre želimo dokazati, da kljub temu, da je za oba igralca
dominantna strategija izdajanje, se na dolgi rok splača so-
delovanje.

3. IGRALNO OKOLJE
Igro iterativna zapornǐska dilema smo implementirali z upo-
rabo označevalnega jezika HTML in programskega jezika Ja-
vaScript kot spletno aplikacijo1. Grafični prikaz igre lahko
vidimo na Sliki 2. Možne igralne strategije so opisane v na-
slednjem podpoglavju. Znotraj aplikacije lahko določimo:
(1) koliko igralcev bo igralo na turnirju, (2) koliko itera-
cij bodo igrali in (3) katero vrsto turnirja bodo uporabljali.
Končne rezultate nato prikažemo v tabeli, ki je sortirana po
najnižji količini kazni, ki jo je posameznik z določeno stra-
tegijo pridobil in tako razglasimo zmagovalca. Zmagovalna
strategija je tista, ki je kaznovana z najmanǰsim številom let
zapora.

3.1 Opis igralnih strategij
Strategije, ki smo jih izbrali, so ene izmed najbolj znanih v
zapornǐski dilemi. Nekatere so enostavneǰse, druge pa bolj
sofisticirane. V naši študiji smo uporabili naslednje:

• “ALL-D” - v tej strategiji igralec nikoli ne sodeluje,
temveč vedno izdaja. Igralec torej v najbolǰsem pri-
meru ne gre v zapor, v najslabšem pa gre v zapor za
dve leti [6].

• “RANDOM” - igralec se naključno odloči ali bo sode-
loval ali izdajal svojega soigralca [7].

• “TIT-FOR-TAT” - v prvem krogu igralec sodeluje, v
vseh ostalih pa ponovi zadnjo soigralčevo odločitev [8].

• “TESTER”- strategija izkorǐsča sisteme, ki neprestano
sodelujejo; v prvem krogu igralec izdaja, nato pa po-
navlja zaporedje “sodelujem, sodelujem, izdajam”. Če
tudi soigralec medtem kdaj ne sodeluje, nadaljujemo z
igranjem strategije “TIT-FOR-TAT” [9].

• “JOSS” - strategija je namenjena izkorǐsčanju “šibkih”
nasprotnikov; zelo podobna je strategiji “TIT-FOR-
TAT”, razlika je le v tem, da v 10% primerov namesto
sodelovanja izbere izdajanje [10].

Poleg že znanih strategij smo razvili tudi lastno strategijo
“PRAKAC”, ki jo predstavljamo v nadaljevanju poglavja.

3.2 Predlagana strategija “PRAKAC”
Na podlagi delovanja prej opisanih strategij smo implemen-
tirali lastno strategijo in z njo poskušali dobiti čim bolǰse
rezultate. Naša strategija se imenuje “PRAKAC” in teme-
lji na maščevanju. Pri tej strategiji v prvem krogu izdamo
nasprotnika. S to potezo upamo, da strategija pridobi proti

1http://betrayal-simulator.praznikbor.now.sh/

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

102



Slika 1: Nastavitve spletne aplikacije

strategijam, ki v prvem krogu sodelujejo. V nadaljnih pote-
zah spremljamo zadnjo nasprotnikovo odločitev. V primeru,
da v zadnji potezi nasprotnik sodeluje, v naslednji potezi so-
delujemo tudi mi. To storimo z upanjem, da bo tudi v nasle-
dnji potezi nasprotnik sodeloval, ker je to za oba najbolǰsa
poteza. Če nas nasprotnik kadarkoli izda, ga mi v nasle-
dnjih dveh potezah izdamo in tako upamo, da pridobimo
nazaj izgubljene točke. Strategija je najbolj uspešna proti
tistim strategijam, ki izmenično sodelujejo in izdajajo, ima
pa tudi dobre rezultate proti bolj sofisticiranim strategijam.

Algoritem 1 Strategija PRAKAC

1: N ⇐ current turn
2: X ⇐ cooperate
3: if N = 1 or (N − 1 or N − 2) = betrayed then
4: X ⇐ betray
5: end if
6: return X

V Algoritmu 1 vidimo postopek izbire odločitve pri strate-
giji “PRAKAC”. Najprej inicializiramo spremenljiko N , v
katero shranjujemo nasprotnikove odločitve. Vrednost spre-
menljivke X hrani našo trenutno odločitev. Privzeto jo na-
stavimo na sodelovanje. Potem s pogojnim stavkom pogle-
damo, če je bila nasprotnikova zadnja ali predzadnja odlo-
čitev izdajanje. Če pogojni stavek drži, nastavimo vrednost
spremenljivke X na izdajanje. Kot rezultat algoritma vr-
nemo vrednost spremenljivke X.

3.3 Turnir s krožnim dodeljevanjem
Pri turnirju s krožnim dodeljevanjem vsak posameznik tek-
muje z vsemi ostalimi [11]. V našem primeru smo to vr-
sto turnirja uporabili za testiranje učinkovitosti posameznih
strategij. V turnir smo vključili poljubno število igralcev,
ki igrajo eno od opisanih strategij. Igralec je nato tekmo-
val z ostalimi in glede na uspešnost pridobival leta, ki jih
mora preživeti v zaporu. Na koncu smo pridobili rezultat v
obliki števila let, ki jih dobi igralec, če uporablja določeno
strategijo. Kot najbolj uspešna strategija se smatra tista, ki

igralcu pridobi najnižjo število let v zaporu [12].

V to vrsto turnirja smo dodali še dodatno pravilo izloča-
nja, ki na koncu vsakega turnirja izloči najslabšega igralca
(tistega, ki bi moral v zaporu preživeti največje število let)
in ponovili celotni turnir s preostalimi igralci. Kadar izlo-
čimo strategije, ki jih je preprosto izkorǐsčati, lahko pri tem
ugotovimo, katere strategije so v povprečju najbolǰse.

4. POSKUSI IN REZULTATI
Strategije smo med sabo primerjali z uporabo implemen-
tirane spletne aplikacije, na kateri lahko nastavimo število
iteracij, število tekmovalcev, ki predstavljajo določeno stra-
tegijo ter način izvajanja turnirja (z izločanjem ali brez).
Za primerjavo strategij smo v obeh vrstah turnirja izpiso-
vali rezultate za 10, 100, 500 in 1000 iteracij. Tako lahko
ugotovimo, katere strategije so bolǰse na kraǰsi in katere na
dalǰsi igralni rok. Število igralcev, ki predstavljajo določeno
strategijo smo nastavili najprej na 1, nato na 5 in na koncu
še na 10. Če pri turnirju z izločanjem vsako strategijo pred-
stavlja samo 1 igralec, se lahko zgodi, da bo strategija, ki
v povprečju dosega zelo dobre rezultate, že v začetku tur-
nirja igrala z močneǰso strategijo in bo izpadla zelo hitro.
Z večjim številom igralcev na vsako strategijo ta problem
omilimo. Za verodostojne rezultate smo vsem strategijam
vedno nastavili enako število igralcev.

Za demonstracijo smo našo strategijo primerjali z ostalimi
implementiranimi strategijami v igri s stotimi iteracijami.
V Tabeli 2 vidimo rezultate lastne strategije v igri ena proti
ena, z že obstoječimi igralnimi strategijami. Za dvoboj smo
dodelili 100 iteracij, z namenom da imajo strategije ki teme-
ljijo na odzivanju možnost blesteti. Opazimo, da strategija
“PRAKAC”premaga vse strategije in pridobi najmanǰso šte-
vilo let v zaporu, z izjemo“ALL-D”, s katero odigra izenačen
rezultat.

Na Sliki 2 vidimo grafično predstavitev rezultatov lastne
strategije v igri ena na ena proti ostalim strategijam. Opa-
zimo, da je rezultat v primerjavi s strategijami “ALL-D”,
“TIT-FOR-TAT” in “TESTER” precej izenačen, medtem ko

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

103



Tabela 2: Rezultati strategije PRAKAC 1 proti 1 s
100 iteracijami.

PRAKAC

ALL-D
200

200

RANDOM
196

124

TIT-FOR-TAT
200

197

TESTER
201

198

JOSS
186

120

Slika 2: Grafična predstavitev strategije PRAKAC
v primerjavi z ostalimi strategijami.

v je rezultat v primerjavi s strategijami“RANDOM”in“JOSS”
občutno bolǰsi v prid strategije “PRAKAC”.

4.1 Turnir s krožnim dodeljevanjem brez iz-
ločanja

Najprej smo v turnir vključili po enega igralca za vsako stra-
tegijo, nato po pet igralcev za vsako strategijo in na koncu še
po deset igralcev za vsako strategijo (Tabela 3). Pri turnirju
s krožnim dodeljevanjem brez izločanja, se pri enemu igralcu
na vsako strategijo izkaže, da prevladuje strategija“ALL-D”,
ki je odlična za izkorǐsčanje naivnih strategij, katerih je pri
naši postavitvi vedno dovolj, da strategija nadvladuje.

Na drugem mestu se vedno pojavi naša strategija “PRA-
KAC”, ki je pravtako dobra v izkorǐsčanju naivnih strategij.
Tretje mesto se pri enemu igralcu na strategijo spreminja.
Pri desetih iteracijah vidimo na tretjem mestu celo strategijo
“RANDOM”, ki s svojim kaotičnim pristopom pretenta bolj
sofisticirane metode, preden jo imajo le-te možnost prema-
gati. Pri stotih iteracijah se na tretjem mestu pojavi stra-
tegija “TESTER”, kadar pa povečamo iteracije na petsto in
več, pa tretje mesto okupira strategija “TIT-FOR-TAT”.

Ko imamo pri vsaki strategiji več igralcev, ki zastopajo dolo-

čeno strategijo, začnejo prevladovati igralci strategije “ALL-
D”. Slednja strategija se je izkazala za najbolǰso v tej vrsti
turnirja.

4.2 Turnir s krožnim dodeljevanjem in izloča-
njem

Enak turnir ponovimo še enkrat, le da tokrat v vsakem
krogu izločimo strategijo, ki ima najslabši rezultat. Tur-
nir izvajamo tako dolgo, dokler ne dobimo skupnega zma-
govalca. Pri turnirju, kjer imamo samo enega predstavnika
vsake strategije, dobimo več zmagovalcev. Pri desetih itera-
cijah sta zmagovalca strategiji “ALL-D” in “PRAKAC”, pri
večjem številu iteracij pa strategiji “TIT-FOR-TAT” in “TE-
STER” (Tabela 4). Ugotovimo, da pri enem igralcu na stra-
tegijo prevladuje “ALL-D”, pri večih igralcih na strategijo
pa “TIT-FOR-TAT”. Iz tega lahko razberemo, da je stra-
tegija “ALL-D” odlična za izkorǐsčanje simplističnih strate-
gij, ki ne poskušajo predvidevati nasprotnikove poteze (npr.
“JOSS” in “RANDOM”). Ko te strategije izpadejo iz tur-
nirja, pa začnejo prevladovati bolj sofisticirane strategije,
kot je “TIT-FOR-TAT”.

Pod drobnogled smo vzeli variantni turnir s krožnim dode-
ljevanjem z enim igralcem na strategijo. V Tabeli 5 lahko
vidimo, kdaj je katera strategija izpadla pri določenem šte-
vilu iteracij. Opazimo, da je, glede na povprečno mesto iz-
pada, najbolǰsa strategija “TIT-FOR-TAT”. Precej podobne
rezultete je pridobila strategija “TESTER”, vendar ima sle-
dnja slabše povprečje, zaradi rezultata pri igri z desetimi
iteracijami (izpade kot druga strategija). Naša strategija
“PRAKAC”v tej vrsti tekmovanja zasede sprejemljivo tretje
mesto. Najslabše se izkaže strategija “JOSS”. Presenetljivo
jo premaga tudi naivna strategija “RANDOM”, ki jo pre-
maga s pomočjo sreče, kajti “RANDOM” naključno izbira
svoje odločitve. Zato lahko v določenih primerih doseže zelo
dobre rezultate, v drugih primerih pa porazne.

4.3 Diskusija
Z izvajanjem raznih turnirjev smo ugotovili, da s prirejenim
turnirjem s krožnim dodeljevanjem pridobimo zanimiveǰse
rezultate. Medtem ko v turnirju brez izločanja vedno pre-
vladuje strategija, ki izkorǐsča naivne metode, v turnirju z
izločanjem prevladajo bolj sofisticirane strategije (Tabela 3).

V Tabeli 5 lahko opazimo, da naivne strategije vedno izpa-
dejo v prvih krogih, nato izpadejo strategije, ki so preživele
le z izkorǐsčanjem le-teh, na koncu pa imamo samo “pame-
tne” strategije. Strategije, ki prevladujejo v turnirju z iz-
ločanjem, so takšne, ki temeljijo na sodelovanju, ampak ne
brezpogojnem.

5. ZAKLJUČEK
V raziskavi smo analizirali pet obstoječih igralnih strategij
v zapornǐski dilemi. Razvili smo tudi lastno igralno strate-
gijo in jo primerjali z ostalimi. Strategije smo med seboj
primerjali v turnirju s krožnim dodeljevanjem brez izločanja
in turnirju z izločanjem.

Ugotovili smo, da so rezultati strategij zelo odvisni od vr-
ste turnirja, ki ga uporabimo. Določena strategija lahko
doseže v nekem turnirju zelo dober rezultat, v drugem pa
pogori. Zanimivo je dejstvo, da naša strategija “PRAKAC”

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

104



Tabela 3: Turnir s krožnim dodeljevanjem brez izločanja.

1 igralec na strategijo 5 igralcev na strategijo 10 igralcev na strategijo

10 iteracij

1. ALL-D
2. PRAKAC
3. RANDOM

1. ALL-D
2. ALL-D
3. ALL-D

1. ALL-D
2. ALL-D
3. ALL-D

100 iteracij

1. ALL-D
2. PRAKAC
3. TESTER

1. ALL-D
2. ALL-D
3. ALL-D

1. ALL-D
2. ALL-D
3. ALL-D

500 iteracij

1. ALL-D
2. PRAKAC

3. TIT-FOR-TAT

1. ALL-D
2. ALL-D
3. ALL-D

1. ALL-D
2. ALL-D
3. ALL-D

1000 iteracij

1. ALL-D
2. PRAKAC

3. TIT-FOR-TAT

1. ALL-D
2. ALL-D
3. ALL-D

1. ALL-D
2. ALL-D
3. ALL-D

Tabela 4: Turnir s krožnim dodeljevanjem in izločanjem.

1 igralec na strategijo 5 igralcev na strategijo 10 igralcev na strategijo
10 iteracij ALL-D, PRAKAC TIT-FOR-TAT TIT-FOR-TAT
100 iteracij TIT-FOR-TAT, TESTER TIT-FOR-TAT TIT-FOR-TAT
500 iteracij TIT-FOR-TAT, TESTER TIT-FOR-TAT TIT-FOR-TAT
1000 iteracij TIT-FOR-TAT, TESTER TIT-FOR-TAT TIT-FOR-TAT

Tabela 5: Turnir s krožnim dodeljevanjem in izločanjem, 1 igralec na strategijo, skupno mesto.

10 iteracij 100 iteracij 500 iteracij 1000 iteracij POVPREČJE
TIT-FOR-TAT 3. 1. 1. 1. 1,5

TESTER 5. 1. 1. 1. 2
PRAKAC 1. 3. 3. 3. 2,5

ALL-D 1. 4. 4. 4. 3,25
RANDOM 4. 6. 5. 5. 5

JOSS 6. 5. 6. 6. 5,75

dosega najbolǰsi rezultat v igri ena na ena, na implementi-
ranih turnirjih pa dosega povprečne rezultate. Vidimo tudi,
da je naša strategija najbolj efektivna v manǰsem številu
soočanj, torej strategija v nasprotju z strategijo “TIT-FOR-
TAT” gleda na kratkoročni dobiček.

Rezultati so odvisni tudi od točkovanja, ki ga uporabimo
med tekmovanjem. Med raziskovanjem tematike smo opa-
zili, da raziskovalci igre ne uporabljajo fiksnega točkovanja,
temveč si ga določajo po svoje. Pri turnirju s krožnim dode-
ljevanjem brez izločanja smo ugotovili, da je najbolǰsa stra-
tegija “ALL-D”. Pri turnirju z izločanjem je najbolǰsa stra-
tegija “TIT-FOR-TAT”, ki je med bolj sofisticiranimi stra-
tegijami in je sposobna izkorǐsčati ostale pametne strategije.
Strategijo, ki bi dosegala solidne rezultate ne glede na vrsto
turnirja, je zelo težko implementirati, saj v enem turnirju
predvladujejo strategije, ki so namenjene izkorǐsčanju naiv-
nih pristopov, v drugem turnirju pa prevladajo bolj sofisti-
cirane strategije.

Čeprav obstaja že ogromno strategij, menimo, da je na vo-
ljo še veliko maneverskega prostora za izbolǰsave obstoječih
strategij in implementacijo novih. V prihodnje bi lahko v
spletno aplikacijo, s katero smo delali analizo, vključili še
več igralnih strategij in več vrst turnirjev. S tem bi lahko
naredili raziskavo še obsežneǰso.

6. LITERATURA
[1] J. Roberts R. Wilson D. M. Kreps, P. Milgrom.

Rational cooperation in the finitely repeated prisoners’
dilemma. In Journal of Economic Theory, pages
245–252, 1982.

[2] R. Axelrod. The evolution of strategies in the iterated
prisoner’s dilemma. In The Dynamics Of Norms, 1997.

[3] R. Axelrod. Effective choice in the prisoner’s dilemma.
In Journal of Conflict Resolution, 1980.

[4] C. Tőke G. Szabó. Evolutionary prisoner’s dilemma
game on a square lattice. In American Physical
Society, pages 58–69, 1998.

[5] WD. Hamilton R. Axelrod. The evolution of
cooperation. In Science, pages 58–69, 1998.

[6] J. R. Stevens D. W. Stephens, C. M. McLinn.
Discounting and reciprocity in an iterated prisoner’s
dilemma. In Science, pages 2216–2218, 2002.

[7] R. Axelrod. More effective choice in the prisoner’s
dilemma. In Sage journals, 1980.

[8] K. Sigmund M. A. Novak. Tit for tat in heterogeneous
populations. In Nature, 1992.

[9] P. Mathieu J. Delahaye. Complex strategies in the
iterated prisoner’s dilemma. In Semantic Scholar,
1994.

[10] R. Axelrod. Effective choice in the prisoner’s dilemma.
In Sage journals, 1980.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

105



[11] L. Moser F. Harary. The theory of round robin
tournaments. In The American Mathematical Monthly,
2018.

[12] X. Yao P. J. Darwen. On evolving robust strategies for
iterated prisoner’s dilemma. In EvoWorkshops, 1994.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

106



Napovedovanje nogometnega zmagovalca z rekurentno
nevronsko mrežo LSTM

Nejc Planer
Fakulteta za elektrotehniko, računalništvo in

informatiko
Koroška cesta 46, 2000 Maribor
nejc.planer@student.um.si

Mladen Borovič
Fakulteta za elektrotehniko, računalništvo in

informatiko
Koroška cesta 46, 2000 Maribor

mladen.borovic@um.si

POVZETEK
Prispevek predstavlja napovedovanje nogometnega zmago-
valca in nekaterih drugih statistik z rekurentno nevronsko
mrežo, ki uporablja celico LSTM. Opisano je tudi kje lahko
pridobimo podatke za posamezne lige in tekmovanja, kako te
podatke potem preoblikujemo in njihov končen izgled. Po-
damo tudi uporabljeno nevronsko mrežo, ter rezultate. To
so ali pade več kot 1,5 gola na tekmo, ali pade več kot 2,5
gola na tekmo in ali obe ekipi zadeneta. Na koncu podamo
še nekaj idej za možne izbolǰsave uspešnosti napovedovanja.

Kjučne besede
napovedovanje, rekurentne nevornske mreže, celica LSTM,
nogomet, umetna inteligenca

1. UVOD
Stave so velik del športa in pritegnejo veliko ljudi, saj so
privlačne zaradi možnega hitrega zaslužka. Problem je, da
je šport lahko zelo nepredvidljiv in je težko ugotoviti končen
izid. Zato si pri stavljanju velikokrat pomagamo s statistiko
preǰsnjih tekem, oziroma preǰsnjih let. To naredi nevronske
mreže zelo zanimive, saj lahko pošljemo to statistiko kot
vhod v mrežo in potem ta napove rezultate za naprej.

Namen dela je ugotoviti, ali lahko z nogometno statistiko
in nevronskimi mrežami uspešno napovemo, kaj se bo zgo-
dilo v prihodnjih tekmah. Za to je potrebno pridobljene
podatke ustrezno preoblikovati in dodati nove, da si izbolj-
šamo natančnost. Tudi oblika mreže je pomembna, saj vse
ne dosegajo iste natančnosti.

Avtor Korpič je v diplomskem delu [13] uporabil različne al-
goritme strojnega učenja za napovedovanje zmagovalca no-
gometne tekme. Uspešnost napovedovanja je bila med 30 in
50 odstotki.

Tudi v raziskovalnem delu [9] so uporabili različne algoritme
strojnega učenja za napovedovanje nizozemske nogometne

lige. Najbolǰse rezultati so bili v povprečju okoli 60 odstot-
kov.

Microsoft ima svoj sistem za napovedovanje športnih rezul-
tatov. Leta 2014 so napovedali vse tekme izločevalnega dela
svetovnega prvenstva pravilno [11]. Njihov matematični mo-
del vzame v račun več faktorjev, od števila zmag, porazov
in neodločenih izidov vse do tipa podlage na igrǐsču in vre-
menskih razmer [10].

Za napovedovanje bomo uporabili rekurentne nevronske mreže,
ki še na tem področju niso veliko uporabljene, in sicer da vi-
dimo ali lahko z njimi dosežemo bolǰse rezultate kot z osta-
limi metodami umetne inteligence.

V naslednjem poglavju opǐsemo pridobivanje podatkov, ki
jih potem tudi podrobneje razložimo in povemo njihovo struk-
turo. Sledi njihova preobdelava preden jih pošljemo v ne-
vronsko mrežo. Zatem v tretjem poglavju opǐsemo arhitek-
turo nevronske mreže, ki jo uporabljamo. V četrtem po-
glavju so predstavljeni rezultati. V petem zaključnem po-
glavju pa podamo smernice za nadaljnje delo.

2. PODATKI
2.1 Pridobivanje podatkov
Nekatere zgodovinske podatke o nogometu smo našli na spletu,
druge pa smo si morali zgenerirati sami. Za največje sve-
tovne nogometne lige že obstajajo datoteke CSV za sezone
od začetka 90. let naprej [4]. Najdemo lahko tudi datoteke
CSV za vsa svetovna prvenstva [3].

Za slovensko nogometno ligo smo si morali napisati svoj pro-
gram [6]. Ta je iz podatkov iz wikipedije [7] in uradne strani
Prve slovenske nogometne lige [5] razbral prave informacije
in jih shranil v datoteko CSV. Največja težava pri tem je
bila, da so se imena klubov skozi leta veliko spreminjala in
je bilo potrebno kar nekaj ročnega dela, da smo povezali
skupaj prava imena klubov.

Prav tako smo morali napisati program za pridobivanje po-
datkov tekmovanja Copa America [1]. Ta je iz podatkov
iz wikipedije [2] ustvaril datoteko CSV, vendar smo morali
podatke za določene tekme vnesti sami, saj ima wikipedija
nekonsistentno kodo.

2.2 Opis podatkov
Določene datoteke CSV so imele veliko število podatkov,
zato smo vzeli le ključne za nas. Prvi podatek je kvote iz

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

107DOI: https://doi.org/10.26493/978-961-7055-82-5.107-110



stavnice Bet365. Pogledali smo 3 kvote, in sicer za zmago
domače ekipe, za neodločen izid in za zmago tuje ekipe. Tega
podatka za slovensko ligo žal ni bilo mogoče najti. Naslednji
podatek je bil ime ekipe. Sledilo je število zadetkov obeh
ekip in pa kdo je zmagal, torej domača ekipa, neodločen izid
ali pa tuja ekipa.

2.3 Preoblikovanje podatkov
Za vsako tekmo smo v upoštev vzeli vse preǰsnje tekme te
sezone. Tako smo si najprej izračunali zadete in prejete gole
do trenutne tekme v sezoni. Potem je sledil izračun šte-
vila točk obeh ekip pred tekmo. Shranili smo si tudi število
zmag, remijev in porazov obeh ekip pred trenutno tekmo.
Za zadnjih 5 tekem obeh ekip smo beležili tudi formo. Če je
ekipa zmagala je bil rezultat v podatkih označen z W, remi
z D in poraz z L. Posebej smo z M označili tudi, če še tekma
ni bila odigrana, torej v prvih petih krogih. Iz teh podatkov
smo ugotovili tudi ali ima ekipa zaporedni niz zmag ali po-
razov. Pogledali smo za nize treh ali petih tekem. Naslednji
podatek je bil, kateri zaporedni teden sezone je. Izračunali
smo tudi razliko v golih in točkah med obema ekipama. Za-
beležili smo tudi razliko med končnima položajema ekip v
preǰsnji sezoni. Če je katera izmed ekip bila preǰsnjo sezono
v nižji ligi, se ji je dodelila pozicija 30, da je se je videla raz-
lika od ekip, ki so igrale v tej ligi. Kratek pregled podatkov
lahko vidimo tudi v Tabeli 1. Preden so se podatki poslali v
mrežo, se je za vse tekstovne podatke naredilo t.i. one-hot
kodiranje, ki je vsak tekst enolično določilo.

3. ARHITEKTURA NEVRONSKE MREžE
Rekurentna nevronska mreža za razliko od navadnih, kot
vhod ne dobi le vhodnega vektorja, temveč tudi stanje iz
preteklosti. To je smiselno, kadar se neka informacija lahko
skriva v samem zaporedju dogodkov. Najpogosteje upora-
bljen nevron pri teh tipih mreže pa je celica LSTM (Long
short-term memory).

Uporabljena rekurentna nevronska mreža ima 4 plasti. Prve
tri plasti imajo po 32 nevronov, zadnja pa 2 nevrona, saj
imamo tudi toliko izhodov. Implementirali smo jo v pro-
gramskem jeziku Python [8] in uporabili njegovo knjižnico
za umetno inteligenco Keras [12]. V kodi samo ustvarimo
sekvenčni model in dodamo število željenih plasti ter jim do-
ločimo število nevronov. Na koncu vsake plasti smo dodali
še aktivacijsko funkcijo sigmoid, ki nam še dodatno norma-
lizira vrednosti. Za prvimi tremi plastmi lahko vidimo tudi
funkcjio izpuščanja (ang. Dropout function), ki poskrbi da
se določen delež naučenega pozabi in tako ne prihaja do pre-
komernega prileganja.

4. REZULTATI
Rezultate razdelimo na dva dela. Najprej podamo napove-
dovanja tekem ligaških sezon, nato pa nogometnih turnirjev.
Model naučimo vse do zadnje sezone oziroma turnirja, za-
dnjo pa uporabimo kot testno množico.

Za zaganjanje uporabljamo računalnik s procesorjem Intel
i5-4750 3,6GHz, grafično kartico NVIDIA GeForce GTX 960
in 8 GB RAM pomnilnika.

4.1 Napovedovanje tekem ligaške sezone

Tabela 1: Vhodni podatki
Vhodni podatek Razlaga

Kvote stavnice Bet365 trije podatki: kvota
za zmago domače
ekipe, kvota za
neodločen izid in
kvota za zmago tuje
ekipe

Število zadetih golov Koliko golov je
zadela vsaka ekipa
do tega trenutka v
sezoni

Število prejetih golov Koliko golov je
prejela vsaka ekipa
do tega trenutka v
sezoni

Točke Koliko točk imata
obe ekipi v tem
trenutku sezone

Pregled statistike tekem Število zmag,
remijev in porazov
obeh ekip do tega
trenutka v sezoni

Forma zadnjih 5 tekem Za vsako izmed
zadnjih 5 tekem ali
je bila zmaga (W),
remi (D), poraz (L)
ali pa še ni bila
odigrana (M)

Igralen teden Kateri zaporedni
teden sezone je

Niz zmag Ali je ekipa zadnje 3
ali 5 tekem zmagala

Niz porazov Ali je ekipa zadnje 3
ali 5 tekem izgubila

Razlika v golih Število zadetih golov
- število prejetiih
golov

Razlika v točkah Točke domače ekipe
- točke tuje ekipe

Razlika v lanskih
položajih na lestivic

Lanski končni
položaj domače
ekipe - lanski končni
položaj tuje ekipe
(če katera od ekip v
preǰsnji sezoni ni
igrala v tej ligi, se ji
dodeli pozicija 30,
tako da je razlika od
ostalih)

Ekipa Ime ekipe
Rezultat H - zmaga domače

ekipe, NH -
neodločeno ali poraz
domače ekipe

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

108



Tabela 2: Uspešnost napovedovanja zmagovalca
tekme glede na različno število plasti

Mreža
Liga 2 plasti 4 plasti

Italijanska liga 70,97% 71,84%
Angleška liga 70,53% 70,79%
Nemška liga 67,65% 69,93%

Španska liga 65,26% 66,05%
Francoska liga 65,53% 63,68%
Slovenska liga 61,11% 61,67%

Slika 1: Uspešnost napovedovanja za posamezno
ekipo znotraj zadnje sezone angleške lige

Lige se načeloma med seboj razlikujejo le po številu ekip,
edino v slovenski ligi je drugačen sistem igranja, saj imajo
ekipe med seboj štiri tekme namesto dveh.

V Tabeli 2 vidimo primerjavo napovedovanja zmagovalca
med mrežo z dvema plastema in štirimi plastmi nevronov
LSTM. Vidimo, da se nevronska mreža z manj plastmi slabše
odnese, ampak je pa načeloma manj častovno zahtevna in
pride običajno do rezultata v polovičnem času v primerjavi
z mrežo s štirimi plastmi. Ker za slovensko ligo nimamo
podatkov za kvote na stavnicah in vidimo slabšo napove-
dljivost, lahko sklepamo, da so kvote pomemben faktor pri
učenju nevronske mreže. Ostale lige pa imajo iste podatke
na vhodu, kar pomeni, da sta italijanska in angleška liga
manj naključni, kot pa francoska in španska, nemška pa je
nekje vmes.

Če podrobneje pogledamo rezultate, lahko vidimo, da pri-
haja tudi do razlik med ekipami, saj se rezultate določene
ekipe lažje napove kot druge, kar lahko za angleško ligo vi-
dimo na Sliki 1. Najbolje se napoveduje Liverpool (36 od
38 pravilnih), Manchester City (33 od 38 pravilnih) in pa
Huddersfield (33 od 38 pravilnih), ki so označeni z zeleno.
Če pogledamo lestvico, so to prva, druga in pa zadnja ekipa
v ligi, torej ji večje probleme delajo ekipe iz sredine lestvice,
kar pa je tudi logično, saj so te majn konsistentne. Najslabše
napovedljiv je Wolves, ki je označen z rdečo, in sicer le 19 od
38 tekem pravilnih. Če pogledamo ekipo iz sredine lestvice
(10 mesto), West Ham, ki je označen s sivo in je pravilno
napovedanih 24 od 38 tekem.

Tabela 3: Uspešnost napovedovanja, ali pade več kot
1,5 gola na tekmo

Liga Uspešnost napovedi (v odstotkih)
Italijanska liga 74,74%
Angleška liga 79,74%
Nemška liga 84,64%

Španska liga 73,95%
Francoska liga 71,23%
Slovenska liga 81,67%

Tabela 4: Uspešnost napovedovanja, ali pade več kot
2,5 gola na tekmo

Liga Uspešnost napovedi (v odstotkih)
Italijanska liga 53,68%
Angleška liga 57,63%
Nemška liga 63,73%

Španska liga 55,00%
Francoska liga 60,00%
Slovenska liga 62,78%

V Tabeli 3 je uspešnost napovedovanja, ali na tekmo pade
več kot 1,5 gola. Napovedljivost tega izgleda precej bolǰsa
kot pa napovedljivost zmagovalca. Če podrobneje preučimo
napovedovanje, lahko vidimo, da mreža v trenutku pride do
lokalnega minimuma iz katerega se kasneje ne spremeni na
bolje. Če pa pogledamo dejanske napovedi, pa lahko vidimo,
da v večini primerov pride do spoznanja, da skoraj vedno
pade več kot 1,5 gola na tekmo. Torej so te natančnosti bolj
ali manj enake dejanskemu odstotkovnemu številu tekem, ko
pade več kot 1,5 gola na tekmo.

V Tabeli 4 je uspešnost napovedovanja, ali na tekmo pade
več kot 2,5 gola. Kot lahko vidimo je napovedljivost slaba.
Ni enak problem kot pri več kot 1,5 gola na tekmo, saj tu ne
pride do rešitve, da bi naj to bilo vedno res, ampak iz teh
vhodnih podatkov ne moremo razbrati nekega vzorca, kdaj
bi temu bilo tako.

V Tabeli 5 je uspešnost napovedovanja, ali obe ekipi na
tekmi zadeneta vsaj en gol. Kot vidimo so rezultati po-
dobno slabi kot pri napovedovanju, ali pade več kot 2,5 gola
na tekmo, torej je uspešnost napovedovanja kar slaba.

4.2 Napovedovanje tekem nogometnih turnir-
jev

Malo drugačen sistem igranja pa se pojavlja na večjih no-
gometnih turnirjih kot je recimo svetovno prvenstvo, saj se

Tabela 5: Uspešnost napovedovanja, ali obe ekipi na
tekmi zadeneta vsaj en gol

Liga Uspešnost napovedi (v odstotkih)
Italijanska liga 62,37%
Angleška liga 54,74%
Nemška liga 59,48%

Španska liga 57,89%
Francoska liga 55,79%
Slovenska liga 66,11%

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

109



Tabela 6: Uspešnost napovedovanja zmagovalca
tekme

Tekmovanje Natančnost napovedovanja
zmagovalca

Copa America 65,62%
Svetovno prvenstvo 65,28%

Tabela 7: Uspešnost napovedovanja skupinskega in
izločevalnega dela tekmovanja

Tekmovanje Uspešnost
napovedi
skupinskega
dela

Uspešnost
napovedi
izločevalnega
dela

Copa America 58,3% 87,5%
Svetovno prvenstvo 58,3% 72,9%

igranje deli na dva dela, to sta skupinski in izločevalni del.

V Tabeli 6 vidimo uspešnost napovedovanja zmagovalca tekme
na svetovnem prvenstvu in pa turnirju Copa America. Obe
tekmovanji sta približno isto napovedljivi. Imata tudi po-
doben trend, in sicer da ima mreža večje probleme z napo-
vedovanjem skupinskega dela turnirja (pod 60 odstotkov),
medtem ko izločilni del predvideva dobro, od 70 do 90 od-
stotkov natančno, kar lahko vidimo v Tabeli 7.

5. ZAKLJUčEK
Prispevek predstavlja napovedovanje določenih statistik no-
gometne tekme z rekurentno nevronsko mrežo LSTM. Ta se
na preteklih rezultatih nauči določenih vzorcev in poskuša
napovedati prihodnje tekme. Za to smo morali zbrati dovolj
veliko podatkov in jih ustrezno predelati. Pomembna je bila
tudi struktura nevronske mreže, torej število skritih plasti
in število nevronov v teh plasteh.

Rekurentna nevronska mreža se uporabi na primeru napo-
vedovanja zmagovalca nogometne tekme, ali pade več kot
1,5 ali 2,5 gola na tekmo in ali obe ekipi zadeneta. Upora-
bljene so angleška, francoska, italijanska, nemška, španska
in slovenska liga ter tekmovanji Copa America in svetovno
prvenstvo. Napovedljivost zmagovalca ligaških tekem je od
61 do 72 odstotkov, zmagovalca nogometnih turnirjev pa od
65 do 66 odstotkov. Napovedljivost, ali pade več kot 1,5 gola
je od 71 do 85 odstotkov, ali pade več kot 2,5 pa od 53 do
64 odstotkov, podobni rezultati so tudi pri napovedovanju,
ali obe ekipi zadeneta, in sicer od 54 do 67 odstotkov.

Nadaljne delo bi zajemalo pridobivanje večjega števila po-
datkov. Za nogometne lige imamo podatke od začetka 90.
let naprej, kar za Slovenijo sicer predstavlja 100 odstotkov
podatkov, ampak ostale lige pa segajo dalje v preteklost in bi
ti podatki mogoče lahko pomagali. Še ena izbolǰsava bi bila
drugačno preoblikovanje podatkov, oziroma uporaba drugih
podatkov nogometne statistike (npr. število kotov ali šte-
vilo kartonov). Zanimivo bi bilo tudi preizkusiti drugačno
arhitekturo nevronske mreže v smislu različnih plasti reku-
rentne nevronske mreže ali pa kombinacijo različnih tipov
nevronskih mrež.

6. LITERATURA

[1] Copa america web scraper. https:
//github.com/planeer/CopaAmericaWebScraper, 19.
6. 2019.

[2] Copa américa. https:
//en.wikipedia.org/wiki/Copa_Am%C3%A9rica, 19. 6.
2019.

[3] Fifa world cup.
https://www.kaggle.com/abecklas/fifa-world-cup,
19. 6. 2019.

[4] Football betting | football results | football bets |
football odds. http://www.football-data.co.uk/,
19. 6. 2019.

[5] Plts - prva liga telekoma slovenije.
https://www.prvaliga.si/prvaliga/default.asp,
19. 6. 2019.

[6] Prva liga web scraper.
https://github.com/planeer/PrvaLigaWebScraper,
19. 6. 2019.

[7] Slovenian prvaliga. https:
//en.wikipedia.org/wiki/Slovenian_PrvaLiga, 19.
6. 2019.

[8] Python. https://www.python.org/, 2. 7. 2019.

[9] Dutch football prediction using machine learning
classifiers. https://pdfs.semanticscholar.org/
b347/e38d5c61a139115884fbff352221c4f7bfe1.pdf,
22. 8. 2019.

[10] Microsoft has perfectly predicted this stage of the
world cup and it thinks brazil is finished.
https://qz.com/231583/

microsoft-world-cup-predictions-brazil-germany/,
22. 8. 2019.

[11] With germany’s win microsoft perfectly predicted the
world cup’s knockout round. https://qz.com/233830/
world-cup-germany-argentina-predictions-microsoft/,
22. 8. 2019.

[12] Keras. https://keras.io/, 29. 6. 2019.

[13] Žan Korpar. Predikcija športnih rezultatov z uporabo
strojnega učenja. Fakulteta za elektrotehniko,
računalnǐstvo in informatiko Univerze v Mariboru,
Maribor, 2018.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

110



Izboljšanje zaznave sovražnega in zlonamernega govora s
pomočjo slovarja besed

Sašo Kolac
Fakulteta za elektrotehniko,

računalnǐstvo in informatiko
Inštitut za računalnǐstvo

Koroška cesta 46,
2000 Maribor, Slovenija
saso.kolac@student.um.si

Aljaž Soderžnik
Fakulteta za elektrotehniko,

računalnǐstvo in informatiko
Inštitut za računalnǐstvo

Koroška cesta 46,
2000 Maribor, Slovenija

aljaz.soderznik@student.um.si

Simon Slemenšek
Fakulteta za elektrotehniko,

računalnǐstvo in informatiko
Inštitut za računalnǐstvo

Koroška cesta 46,
2000 Maribor, Slovenija

simon.slemensek1@student.um.si

Borko Bošković
Fakulteta za elektrotehniko,

računalnǐstvo in informatiko
Inštitut za računalnǐstvo

Koroška cesta 46,
2000 Maribor, Slovenija

borko.boskovic@um.si

POVZETEK
V članku je predstavljena metoda, ki temelji na optimizaciji
predprocesiranja besedil z namenom izbolǰsati natančnost
klasifikacije sovražnega govora z uporabo algoritmov stroj-
nega učenja. Žaljive kratice in zaznamke nadomestimo z
žetonom <curseword>, s čimer algoritmi lažje klasificirajo
sovražni in zlonamerni govor. V članku so primerjani re-
zultati klasifikacij z in brez naše metode algoritmov naivni
bayes, logistične regresije, podporni vektorji, naključni goz-
dovi, gradiento pospeševanje regresijskih gozdov, nevronske
mreže in ”Bagging”klasifikator. Testna besedila smo dobili
iz socialnega omrežja Twitter.

Kjučne besede
jezikovne tehnologije, klasifikacija, sovražni govor, strojno
učenje, zlonamerni govor

1. UVOD
Svoboda izražanja je temeljna človekova pravica in predpo-
goj za obstoj demokratične družbe. Kot vse pravice, tudi
svobode izražanja ni dopustno izrabljati na škodo drugih in
je zamejena s človekovim dostojanstvom in z načelom va-
rovanja javnega reda in miru. Nekatere oblike izražanja so
zato zakonsko prepovedane ali veljajo za družbeno nespreje-
mljive, na primer grožnje, žalitve, komunikacija z namenom
preslepitve in sovražni govor.

Sovražni in zlonamerni govor se navezujeta na besedila, ki
so do posameznikov ali skupine ljudi žaljiva, prestrašujoča,

poniževalna ali takšna, da spodbujajo nasilje [9]. Njegov cilj
je razčlovečiti tiste, proti katerim je namenjen. Prepozna-
vanje takšnih besedil na spletu je dandanes zelo pomembno,
saj imajo socialni mediji [6, 8] zelo velik vpliv na človeško
psiho.

Družbena omrežja in razne platforme za objavljanje sple-
tnih videoposnetkov v svojih pravilih prepovedujejo širjenje
sovraštva proti družbenim skupinam, posameznicam in po-
sameznikom. Prepovedujejo tudi grožnje in nadlegovanje
ter omejujejo objavljanje vsebin, ki niso primerne za mla-
doletne. Facebook, Twitter, YouTube, Microsoft, Google+,
Instagram in Snapchat so se s podpisom posebnega kode-
ksa zavezali, da bodo večino upravičenih prijav nezakoni-
tega sovražnega govora pregledali v roku 24 ur in onemogo-
čili dostop do teh vsebin ob upoštevanju lokalne in evropske
zakonodaje.

Problem na katerega naletimo je preveliko število besedil
oz. objav, da bi lahko ljudje ročno preverjali, če se besedilo
dejansko uvršča pod sovražni govor. Eden izmed načinov
za soočanje s tem problemom so algoritmi strojnega učenja
[1, 7, 10], ki omogočajo dokaj uspešno zaznavo sovražnega
govora.

V tem delu smo se osredotočili na predprocesiranje besedila
v tvitih, tako da smo s pomočjo slovarja žaljivih besed zame-
njali vse žaljive besede, ki so se pojavile v besedilih tvitoh
z žetonom <curseword>. Nad predprocesiranim besedilom
smo nato uporabili algoritme različnih vej strojnega učenja v
programskem jeziku Python in medsebojno primerjali rezul-
tate z in brez modifikacije pri predprocesiranju. Podatkovno
bazo s približno 100.000 tviti smo pridobili iz repozitorija [3].

V pričujočem poglavju bomo predstavili ugotovitve sorodnih
del. Sledi poglavje, ki opisuje predstavljeno metodo, ter po-
tek eksperimenta z analizo rezultatov. Temu poglavju sledi
poglavje, ki govori o naši razlagi rezultatov. Nazadnje sledi
še zaključek, ki povzema ključne ugotovitve našega dela.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

111DOI: https://doi.org/10.26493/978-961-7055-82-5.111-114



2. SORODNA DELA
Podobno delo so opravili v [5], kjer so avtorji preizkusili pet
modelov tradicionalnega strojnega učenja in nekaj modelov
temelječih na nevronskih mrežah. Uporabili so naslednje
modele:

1. Tradicionalni modeli strojnega učenja:

• Naivni Bayes (NB): z aditivno konstanto gla-
jenja 1,

• Logistična regresija (LR): Linearna z L2 regu-
larizacijsko konstanto 1 in z BFGS optimizacijo za
omejen spomin,

• Metoda podpirnih vektorjev (SVM): Line-
arna z L2 regularizacijsko konstanto 1 in s funk-
cijo logistične izgube,

• Metoda naključnih gozdov (RF): Porazdeli-
tev verjetnosti napovedi 10 naključnih dreves od-
ločanja,

• Metoda gradientnega pospeševanja regre-
sijskih gozdov (GBT): S konstanto učenja 1 in
s funkcijo logistične izgube.

2. Modeli temelječi na nevronskih mrežah:

• Konvolucijska nevronska mreža (CNN): Mo-
deli uporabljajo križno entropijo s softmax, kot
funkcijo izgube in Adam kot optimizator,

• Ponavljajoče se dvosmerna nevronska mreža
(RNN): Modeli uporabljajo križno entropijo s si-
gmoid, kot funkcijo izgube in Adam kot optimiza-
tor. Uporabljen je tudi vratni mehanizem GRU,

• Variacije zgornjih dveh modelov.

Modele so preizkusili na sovražnih in zlonamernih besedilih
iz socialnega omrežja Twitter. Predstavili so možnost iz-
bolǰsave klasifikatorjev z uporabo dodatnih lastnosti in kon-
tekstnih podatkov. Iz eksperimentov so ugotovili, da je naj-
bolj natančen model temelječ na dvosmerni nevronski mreži
z GRU, naučen na besednih lastnostih z metodo modulov
za grozdenje latentnih tem. Izmerjena vrednost mere F1 za
model je bila 80.5 %.

Članek [2] opisuje metodo za zaznavanje neprimernega ob-
našanja uporabnikov na Twitterju. Predstavili so tudi ro-
bustno metodologijo za ekstrakcijo besedil, uporabnǐskih in
omrežno temelječih atributov, preučevanja lastnostni agre-
sivnih in ustrahujočih uporabnikov ter kakšne lastnosti jih
ločijo od navadnih uporabnikov. Ugotovili so, da uporab-
niki, ki ustrahujejo, manj objavljajo na splet, so deležni manj
socialnih skupin in so manj popularni od navadnih uporab-
nikov. Agresivni ljudje so relativno popularni in imajo več
negativnosti v svojih objavah. Dokazali so, da lahko algo-
ritmi strojnega učenja zaznajo agresivno in ustrahojoče ve-
denje uporabnikov z več kot 90 % AUC (angl. Area Under
the Curve).

Delo [4] opisuje dvokoračno metodo klasifikacije zlonamer-
nega jezika na twitterju in nato nadaljno delenje teh klasifi-
kacij v specifične tipe. To metodo primerjajo z enokoračno,
ki opravi samo eno več razredno klasifikacijo v delenje tipov

za zaznavanje rasističnih in seksističnih besedil. Za enoko-
račno metodo so ugotovili, da je najbolǰsa rešitev nevronska
mreža HybridCNN z vrednostjo mere F1 82.7 %, za dvoko-
račno pa tradicionalni model logistične regresije z vrednostjo
mere F1 82.4 %.

Članek [7] opisuje klasifikacijo besedil na twitterju v katego-
rije seksistično, rasistično ali nič od tega. Preizkusili so ve-
liko različnih arhitektur globokega učenja in z eksperimenti
pokazali, da so metode temelječe na semantični analizi be-
sed bolǰse od metod temelječih na znakovnih in besednih
n-gramih za približno 18 % vrednosti mere F1.

Članek [1] opisuje metodo za avtomatizirano zaznavo sovra-
žnega govora na twitterju z ekstrakcijo lastnosti besedil na
različnih konceptualnih nivojih in apliciranjem več razredne
klasifikacije nad njimi. Sistem izkorǐsča variacije statističnih
modelov in vzorce temelječe na pravilih. Obstaja tudi pomo-
žni repozitorij z uteženimi vzorcei, ki izbolǰsajo natančnost
tako, da povežejo besedilo z njegovim ocenjenim vnosom.

3. PREDSTAVITEV METODE IN EKSPERI-
MENTA

3.1 Metoda
Predstavljena metoda temelji na optimizaciji predprocesi-
ranja besedil z namenom izbolǰsati natančnost klasifikacije
sovražnega govora z uporabo algoritmov strojnega učenja.

Ključna razlika med predstavljeno metodo in metodami dru-
gih avtorjev se skriva v koraku predprocesiranja. Pri pred-
stavljeni metodi v tem koraku poleg vseh ostalih tipičnih
elementov predprocesiranja, vse besede iz vsebine sporočila,
ki so v slovarju žaljivih besed, zamenjamo z žetonom <cur-
seword>, s čimer algoritmi lažje klasificirajo sovražni in zlo-
namerni govor.

Delovanje predstavljene metode je podrobno opisano v na-
slednjem podpoglavju, ko opisujemo izvedbo eksperimenta.

3.2 Eksperiment
Za implementacijo smo uporabili programski jezik Python.
Ene izmed pomembneǰsih knjižnic, ki smo jih uporabili v
implementaciji so Numpy, katera nudi hitre in učinkovite
operacije na poljih. Programski jezik razširi v visoko ni-
vojni jezik za manipulacijo numeričnih podatkov podobno
jeziku Matlab. Sklearn smo uporabili za orodja, ki jih nudi
za rudarjenje in analizo podatkov. Uporabili smo še knji-
žnico Pandas, ki nudi dobre podatkovne strukture in orodja
za analizo podatkov in NLTK, ki je knjižnica za podporo
programom, ki se ukvarjajo z naravnim jezikom ter Tweepy,
ki poenostavi dostop do API-jev socialnega omrežja Twitter.

3.2.1 Pridobivanje korpusa
Za pridobivanje podatkov smo najprej morali na socialnem
omrežju Twitter zaprositi za spletni račun razvijalca. S tem
smo pridobili dostop do Twitterjeve spletne storitve v katero
smo pošiljali IDje tvitov iz repozitorija [3], storitev pa nam je
vrnila vsebino tvita. Zaradi omejitve števila klicov spletne
storitve je pridobivanje vseh tvitov iz repozitorija trajalo
približno 72 ur. Od 99799 tvitov, katere smo pridobili iz
repozitorija [3] smo jih s pomočjo spletne storitve Tiwtter
uspešno prenesli 79768, saj so Twitterjevi moderatorji nekaj

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

112



žaljivih in zlonamernih tvitov od takrat, ko je bila baza z
IDji tvitov objavljena že uspešno odstranili. Izvajanje učnih
algoritmov je implementirano v programskem jeziku Python
po zgledu članka [5].

3.2.2 Predprocesiranje
Gre za klasično predprocesiranje besedila, kot je odstrani-
tev posebnih znakov, ”hash tags”, spletne povezav in po-
dobnih elementov z uporabo regularnih izrazov. Podatke
razdelimo na 10 naključnih prečnih preverjanj (ang. folds).
Z našo metodo, še v objavah iz Twitterja zamenjamo žaljive
besede z žetonom <curseword> za nadaljno bolǰse učenje
algoritmov. Kot žaljive besede smo smatrali vse besede,
ki so se pojavile na seznamu Googlovih prepovedanih be-
sed (vir: https://www.freewebheaders.com/full-list-of-bad-
words-banned-by-google/).

3.2.3 Implementiranje dodatnih učnih algoritmov
Zraven naštetim učnim algoritmom članka [5] v poglavju 2
smo še implementirali nevronsko mrežo MLP in tradicionalni
model ”Bagging”klasifikator. Nevronsko mrežo smo izbrali
zaradi dobrih rezultatov v sorodnih člankih. Za izbran tra-
dicionalni model pa je znano, da dobro deluje kadar nimajo
besede zelo podobnih pomenov.

3.2.4 Učenje in evaluacija algoritmov
Po predprocesiranju smo algoritme učili 2 krat. Enkrat z
našo metodo optimizacije in enkrat brez. Po končanem uče-
njo smo še naredili evulacijo pridobljenih učnih modelov.
Največjo pomembnost smo namenili meri F1 - enačba (1),
ki predstavlja harmonično povprečje med senzitivnstjo in
preciznostjo. Najbolǰso vrednost doseže pri 1 (popolna pre-
ciznost in senzitivnost), najslabšo pa pri številu 0.

F1 = 2 · preciznost · senzitivnost
preciznost + senzitivnost

(1)

3.3 Analiza rezultatov
Pri vsaki metodi smo naredili deset poskusov z naključno
izbranimi podatki. Uporabljali smo mero F1, preciznost,
senzitivnost, mikro, makro ter uteženo povprečje. Primer-
java rezultatov je narejena glede na povprečje vseh poskusov
z uporabo mere F1, kot je razvidno na slikah 1 in 2.

Slika 1 prikazuje mero F1 posameznih metod brez in z našo
modifikacijo pri predprocesiranju besedila v tvitih. Pri so-
vražnem govoru nam je uspelo metodo SVM v povprečju
izbolǰsati za 7 %, medtem ko so metode NB, LR, RF in
MLP ostale primerljivo dobre. Občutno poslabšali pa sta se
metodi GBT in BC (za 9 % oziroma 8 %).

Kot je razvidno iz slike 2 nam pri zaznavanju zlonamernega
govora z modifikacijo pri predprocesiranju ni uspelo doseči
bolǰse mere F1 pri nobeni metodi . Najslabše rezultate smo
dosegli pri metodah GBT in BC (7 % oziroma 5 % poslab-
šanje s predprocesiranjem). Zakaj menimo, da je temu tako,
smo opisali v naslednjem poglavju.

Pri zaznavi sovražnega govora sta nam metodi, ki smo ju
dodatno implementirali (MLP in BC) prinesli najslabše re-
zultate mere F1 (37 % in 42 %) od vseh sedmih preizkušenih

Slika 1: Primerjava uspešnosti metod za zaznavo so-
vraznega govora

Slika 2: Primerjava uspešnosti metod za zaznavo zlo-
namernega govora

metod. Z modificiranim predprocesiranjem se je mera F1 še
dodatno poslabšala na 33 % (MLP) in 34 % (BC).

Pri zaznavi zlonamernega govora sta se metodi MLP in BC
odrezali malce bolje, še vedno pa nista bili med najnatanč-
neǰsimi. Brez uporabe slovarja pri predprocesiranju si je
metoda BC delila četrto mesto z metodo RF, obe sta imeli
mero F1 85 %. Medtem, ko si je metoda MLP delila zadnje
mesto z metodo NB z mero F1 83 %. Ko smo vključili še
predprocesiranje s slovarjem je metoda BC skupaj z meto-
dama GBT in RF celo kazala najslabšo mero F1 izmed vseh
metod 80 %, metoda MLP pa je bila le mesto nad njimi z
mero F1 81 %.

Pri vseh metodah smo uporabili optimalne parametre, ka-
teri so bili izračunani s pomožno funkcijo. Tako smo dobili
za SVM parameter Alpha vrednost 0.0001, izguba je bila
logaritmična s kaznijo 12, L1 razmerje 0.15, ter moč T pa-
rametra 0.5. Pri metodi NB smo dobili parameter Alpha z
vrednostjo 1 in omogočili učenje z zgodovino. Pri LR me-
todi smo uporabili logaritem Lbgfs s kaznijo 12 ter omejili
iteracije na 100. Za GBT metodo smo omejili globino na
1 in uporabili število približkov na 100 ter stopnjo učenja
0.1. Metoda RF je bila najmanj omejena, saj nismo ome-
jevali globine in širine, uporabili pa smo kriterijsko metodo

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

113



Gini. Pri metodi MLP smo uporabili skrite nivoje velikosti
100, parameter Alpha z vrednostjo 0.0001, število iteracij
smo omejili na 200 in uporabljali algoritem Adam. Za BC
metodo smo uporabili 5 približkov z neomejenim številom
opravil, vsi približki so imeli tudi namestnike po funkciji
Bootstrap.

4. DISKUSIJA
S pomočjo predlaganega predprocesiranja smo poenotili ža-
ljive besede. To pa je algoritmu SVM omogočilo, da je do-
segel bolǰse rezultate. Razlog temu bi lahko bil ta, da so se
vse žaljive besede preslikale v isti vektor. To pa je algoritmu
omogočilo lažje določanje hiperravnin zaradi manǰsega šuma
v podatkih.

Pri predprocesiranju smo v slovarju imeli tako zlonamerne,
kot tudi sovražne besede. Ko smo te besede zamenjali z ena-
kim žetonom, smo posplošili klasifikacijo in zmanǰsali razlike
med vrstami besedil.

V prihodnosti bi lahko predprocesiranje izbolǰsali z večjim
in bolǰsim slovarjem. Lahko bi ločili besede slovarja za vsak
razred klasifikacije. Lahko bi v slovar vključili besedne zveze
in fraze.

Natančnost klasifikacij, bi lahko izbolǰsali z bolj podrobnim
deljenjem žaljivih besed na več različnih žetonov (v tem po-
skusu je samo 1 tip žetona). Nadalje bi jo izbolǰsali z raz-
širjanjem slovarja žaljivih besed.

Lahko bi uporabili različni korpus za zlonamerni in sovražni
govor. S tem bi dosegli bolj robustno in podrobno zaznavo
žaljivega govora. Po primerjanju rezultatov, bi še lahko po-
skusili zgraditi nove hibridne in amsambelske metode učenja
iz najbolǰsih testiranih algoritmov.

5. ZAKLJUČEK
Na spletu je veliko različnih primerkov sovražnega in zlo-
namernega govora. Pri prepoznavi je eden izmed problemov
možne variacije žaljivih besed, ki imajo podoben pomen. Re-
zultati našega dela so pokazali, da lahko naredimo majhno
izbolǰsavo klasifikacij sovražnega govora takih primerov pri
algoritmu SVM, če zmanǰsamo raznolikost žaljivih besed s
slovarjem žaljvih besed, ki te besede zamenja z žetonom.

Uspešnost naših metod smo ocenili z mero F1. Strokovnjaki
so dosegli z njihovo najbolǰso izkazano metodo SVM pri so-
vražnem govoru mero F1 z vrednostjo 78 %, z našo metodo
slovarja žaljivih besed pa smo dosegli vrednost 85 %. Za zlo-
namerni govor so s to metodo dosegli vrednost mere F1 87
%, z našo metodo pa smo dosegli le 83 %. Pri ostalih rezul-
tatih smo glede na mero F1 za sovražni in zlonamerni govor
dosegli slabše rezultate pri metodah naivni bayes, linearna
regresija, gradient boosting dreves in naključni gozd.

Prav tako je do razlik v rezultatih enakih testiranih učnih
metod kot v članku [5], prǐslo zaradi tega, ker nismo mogli
pridobiti vseh tvitov iz baze, ker so upravljalci Twitterja
med tem že izbrisali nekatere zlonamerne in sovražne tvite.

S pomočjo predlaganega predprocesiranja smo poenotili ža-
ljive besede. To pa je algoritmu SVM omogočilo, da je do-
segel bolǰse rezultate. Razog temu bi lahko bil to, da so se

vse žaljive besede preslikale v enak vektor. To pa je algo-
ritmu omogočilo lažje doloćanje hiperravnine, zaradi manj-
šega šuma v podatkih.

Literatura

[1] Sasha Uritsky Stan Matwin Amir H. Razavi,
Diana Inkpen. Offensive language detection using
multi-level classification. Canadian AI 2010: Advances
in Artificial Intelligence, Berlin, Heidelberg, 2010.

[2] Jeremy Blackburn Emiliano De Cristofaro Gianluca
Stringhini Athena Vakali Despoina Chatzakou,
Nicolas Kourtellis. Mean birds: Detecting aggression
and bullying on twitter. WebSci ’17, Troy, NY, USA,
2017.

[3] Antigoni-Maria Founta, Constantinos Djouvas,
Despoina Chatzakou, Ilias Leontiadis, Jeremy
Blackburn, Gianluca Stringhini, Athena Vakali,
Michael Sirivianos, and Nicolas Kourtellis. Large scale
crowdsourcing and characterization of twitter abusive
behavior. In 11th International Conference on Web
and Social Media, ICWSM 2018. AAAI Press, 2018.

[4] Pascale Fung Ji Ho Park. One-step and twostep
classification for abusive language detection on
twitter. Proceedings of the First Workshop on Abusive
Language Online, Vancouver, BC, Canada, 2017.

[5] Younghun Lee, Seunghyun Yoon, and Kyomin Jung.
Comparative studies of detecting abusive language on
twitter. Proceedings of the Second Workshop on
Abusive Language Online (ALW2), Brussels, Belgium,
2018.

[6] Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. Abusive language
detection in online user content. WWW ’16
Proceedings of the 25th International Conference on
World Wide Web, Montréal, Québec, Canada, 2016.

[7] Manish Gupta Vasudeva Varma Pinkesh Badjatiya,
Shashank Gupta. Deep learning for hate speech
detection in tweets. WWW ’17 Companion
Proceedings of the 26th International Conference on
World Wide Web Companion, Perth, Australia, 2017.

[8] Sara Sood, Judd Antin, and Elizabeth Churchill.
Profanity use in online communities. CHI ’12
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, Austin, Texas, USA,
2012.

[9] William Warner and Julia Hirschberg. Detecting hate
speech on the world wide web. Proceedings of the
Second Workshop on Language in Social Media,
Montréal, Canada, 2012.

[10] Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and
Carolyn Rose. Detecting offensive tweets via topical
feature discovery over a large scale twitter corpus.
CIKM ’12 Proceedings of the 21st ACM international
conference on Information and knowledge
management, Maui, Hawaii, USA, 2012.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

114



Investigating patterns using cellular automata

László Tóth
University of Szeged
13 Dugonics square

Szeged, Hungary
tothl@jgypk.u-szeged.hu

ABSTRACT
Complex systems based on a simple rule generates random, chaotic patterns. Examples of such models include cellular
automata (CA). Over fifty years of CA research have been applied and analyzed in several CA fields, but their network
topology study is still not significant.

How a cell can influence its environment is very important in CA models. The chaotic behaviors cause, that the information
carried by the system can be of great importance for a pattern that will be passed down through generations.

During our research it was implemented a framework that can determine a communication network formed by Langton’s CAs
cells. This allows us to analyze factors that can influence the spread of information carried by cells. It is possible to simulate
and analyze dynamically changing patterns with the proper parameterization of the developed system. These patterns created
by cell cultures are grown in neurobiological labs.

Keywords
cellular automata, information spreading, cellular communication

Acknowledgments
The author was supported by the EU-funded Hungarian grant EFOP-3.6.2-16-2017-00015.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

115DOI: https://doi.org/10.26493/978-961-7055-82-5.115





StuCoSReC



University of Primorska Press
www.hippocampus.si

ISBN 978-961-7055-82-5


	Fister jr., Iztok, Andrej Brodnik, Matjaž Krnc and Iztok Fister (eds.). StuCoSReC. Proceedings of the 2019 6th Student Computer Science Research Conference. Koper: University of Primorska Press, 2019
	Colophone
	Preface
	Contents
	Dušan Fister and Timotej Jagrič ◆ Online Long Short-Term Memory Network for Stock Trading
	Boštjan Bubnič ◆ Defining computational thinking framework for introductory programming in higher education
	Michele Perrone, Urban Knupleš, Mitja Žalik, Vid Keršič and Tadej Šinko ◆ Passive Floating Probe
	László Zahorán and András Kovács ◆ Efficient Collision Detection for Path Planning for Industrial Robots
	Ágnes Vida and Boglárka G.-Tóth ◆ Sensitivity analysis for p-median problems
	Máté Pintér and Balázs Dávid ◆ A two-stage heuristic for the university course timetabling problem
	Urban Košale, Pia Žnidaršič and Kristjan Stopar ◆ Detection of different shapes and materials by glasses for blind and visually impaired
	Klemen Berkovič, Uroš Mlakar, Borko Bošković, Iztok Fister and Janez Brest ◆ Comparison of clustering optimization for classification with PSO algorithms
	Balázs Csutak, Tamás Péni and Gábor Szederkényi ◆ Hierarchical Routing Algorithm for Industrial Mobile Robots by Signal Temporal Logic Specifications
	Krishna Gopal Dhal, Swarnajit Ray, Arunita Das, Iztok Fister Jr. and Sanjoy Das ◆ Decolorization of Digital Pathology Images: A Comparative Study
	Matic Pintarič and Sašo Karakatič ◆ Solving multi-depot vehicle routing problem with particle swarm optimization
	Sašo Pavlič and Sašo Karakatič ◆ Recognizing the subject exposure from the EEG signals with artificial neural networks
	Grega Vrbančič, Milan Zorman and Vili Podgorelec ◆ Transfer Learning Tuning Utilizing Grey Wolf Optimizer for Identification of Brain Hemorrhage from Head CT Images
	Marko Zabreznik and Jernej Kranjec ◆ System for remote configuration and over the air updates in restricted environments
	Gyöngyvér Vass and Boglárka G.-Tóth ◆ Covering problems and Influence maximization
	Csaba Botos, Tamás Hakkel, Márton Áron Goda, István Z. Reguly and András Horváth ◆ Strong deep learning baseline for single lead ECG processing
	Žan Grajfoner and Lucija Brezočnik ◆ Primerjava osnovnega algoritma po vzoru obnašanja netopirjev in njegove hibridne različice HBA
	Domen Kavran, Robi Novak, Jan Banko, Rok Potočnik, Luka Pečnik and Borko Bošković ◆ Nadgradnja algoritma FLORS za besednovrstno označevanje slovenskih besedil
	Klemen Kac and Bor Praznik ◆ Analiza igralnih strategij v iterativni zaporniški dilemi
	Nejc Planer and Mladen Borovič ◆ Napovedovanje nogometnega zmagovalca z rekurentno nevronsko mrežo LSTM
	Sašo Kolac, Aljaž Soderžnik, Simon Slemenšek and Borko Bošković ◆ Izboljšanje zaznave sovražnega in zlonamernega govora s pomočjo slovarja besed
	László Tóth ◆ Investigating patterns using cellular automata



